_AD-A140 884 R STUDY OF THE FEASIBILITY OF DUPLICATING JAMPS
APPLICATIONS SOFTWARE IN THE ADA PROGRAMMING LANGUAGE
(1)) MITRE CORP_BEDFORD HR P G HONE APR 84 MTR-39167

UNCLARSSIFIED ESD-TR-84-169 F19528-84-L-6091 F/G 9/2

IR NG IS R R CALTRL N WA S S R VAT A 47478 T Ve T S R

! 3{'»_ -
I
=.=....-.—v m ™ m
s e 20
nm ll -
. | = 'IB
; i1.25 W14 wie
2 s ns |
k« "MICROCOPY RESOLUTION TEST CHART r—
N MATIONAL BUREAL-OF STANDARDS-1963-A
?m R e

KA S R OB AR S ChERLEY e

ESD-TR-84-160 MTR9167
A STUDY OF THE FEASIBILITY OF
v DUPLICATING JAMPS APPLICATIONS
00 SOFTWARE IN THE ADA PROGRAMMING
o0 LANGUAGE
Q
< By
E R. G. HOWE
é APRIL 1984
Prepared for
DEPUTY COMMANDER FOR TACTICAL SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE _
Hanscom Air Force Base, Massachusetts

S

S DTIC

< ELECTE '

E:..l MAY O 8 19684 !

Project No. 4100
Approved for public release; Prepared by
distribution unlimited. THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-84-C-0001

84 05 07 019

v
i

When U.S. Government drawings, specifications
or other data are used for any purpose other
than a definitely related government procure-
ment operation, the government thereby incurs
no responsibility nor any obligation whatsoever;
and the fact that the government may have for-
mulated, furnished, or in any way supplied the
said drawings, specifications, or other data is
not to be regarded by implication or otherwise
as in any manner licensing the holder or any
other person or conveying any rights or permis-
sion to manufacture, use, or sell any patented
invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

}an(%”// : Bt G ot

JAMES C. GRAVES, 1Lt, USAF BERT J. HOPKINS, GM-13
TADIL J Systems Engineer Chief, Special Projects Division
Tactical Communication Systems Tactical Communication Systems
FOR THE COMMANDER

RICHARD M. DEMILIA
. Asst System Program Director
Tactical Communication Systems Program Office

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

WL W W & W T WaPVeTd¥ad¥ L " T L 75 %1 o T T .1

1s. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

28 SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

2. OECLASSIFICATION/ODOWNGRADING SCHEQULE

unlimited.

4. PERFORMING ORGANIZATION REPORT NUMSER(S)
MTR-9167
ESD-TR-84-160

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
The MITRE Corporation {11 applicabie)

7s. NAME OF MONITORING ORGANIZATION

6c. ADDAESS (City, State end ZIP Code)

Burlington Road
Bedford, MA 01730

7b. ADDRESS (City, State end ZIP Code)

Gs. NAME OF FUNDING/SPONSORING . OFFICE SYMBOL
ORGANIZATION Deputy Commander (I applicebis)

for Tactical Systems TCSR

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
F19628-84-C-0001

Sc. ADDRESS (City, State end ZIP Code)

Electronic Systems Division, AFSC
Hanscom AFB, MA 0 ¢

|10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NoO. NO. NO. NO.
4100

11, TITLE (Includs Securify Classification)
A STUDY OF THE FEASIBILITY OF DUPLICATING

12. PEASONAL AUTHOR(S)

R. G. Howe
13e. TYPE OF/REPONT 130, TIMil COVEREO
Final (Report FROM TO

16. SUPPLEMENTARY NOTATION

16. PAGE COUNT

14. DATE OF REPORT (Yr., Mo.. Dey)
1984 April

86

17. COBATI CODES

) W SUS. GA. Ada

19. ABSTRACY (Continue on reverse if necessery and identify by block number)

| 18 SUBJECT TERMS (Continue on reverse if necemery and identify by biock anumber)

Ada Run-~-Time Environments

Cocomo Cost Model
Ada Feasibility

\(TINTRCCS Rutomated MESTALE p

) This document 1s a feasibility study of reimplementing the JAMPS,{apﬁii-cations softv;fe\ig

using the Ada programming language. Existing JAMPS software is written in®™*C'**“language;
reimplementation is under consideration to promote the reusability of the JAMPS software
and decrease JAMPS life cycle costs. Ada software development tools for the MC68000 now
exist in rudimentary form, but, due to the inadequacy of run time environments and the
lack of validated compilers, these tools are inadequate for duplicating JAMPS software

at this time. However, the tools are expected to improve sufficiently that reimplementa-
tion in Ada might reasonably begin in FY85. Cost estimates result in a $4.5M pricetag;
manpower estimates and schedules are also included.

AN

A}

] AVAILABILITY OF ABSTRACY 2. ABSTRACT SECURITY CLABBIFICATION

uncLAsir180/unLIMTED (I same as mer. 3 otic veane O Unclassified
2. NAME OF RESPONBISLE INDIVIDUAL
Susan R. Gilbert

22%. TELEPHONE NUMBER 22¢. OFFICE SYMBOL

(Inciude Area Code)
(617) 271-8088

COITION OF 1 JAN 73 18 OBSOLETE.

UNCLA!

‘SECURITY CLASRIFICATION OF THIS PAGE

Gt Ty lancdy Wby 8 s B Sa e i livll g e . i o 1 L N €T A S ATAT AL GRS ELE AR L 20 « T T, T

—UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

11. (Con't.) JAMPS APPLICATIONS SOFTWARE IN THE ADA PROGRAMMING LANGUAGE.

¥

SECURITY CLASSIFICATION OF THiS PAGE

TSN LA TL G

L) LY TN o

EXECUTIVE SUMMARY

The existing JAMPS software, writtem in the "C" language, was
developed under severe budgetary constraints and without any consid-
eration of provisions for software reusability. Comnsequently, it
may be difficult to incorporate JAMPS software as an off-the-shelf
package in other Air Force systems. Reimplementation in Ada is
under consideration to promote the reusability of JAMPS software.

Ada softvare development tools (for the MC68000) currently
exist in rudimentary form, but are not considered adequate for
duplicating JAMPS software at this time. However, the tools are
expected to improve sufficiently that reimplementaton in Ada might
reasonably begin in FY85.

1f, after appropriate Ada programming support tools become
fully available, there is serious interest in reusing JAMPS software
in several other Air Force acquisition programs, then it would be
reasonsble to reconsider the possibility of duplicating JAMPS
software in Ada.

Once a contract has been awarded, it vzll take an estimated two
years to duplicate JAMPS software in Ada.

The total cost to duplicate JAMPS software in Ada is estimated
to be $4.5M (1983 dollars). An upper bound for the total cost of

reimplementation in Ada, based on some pessimistic assumptions, is
$6.3M.

Accession For

NTIS GORARI B
DTIC TAB
Unannounced a

Justification —

By
Distripption/
Availability Codes
Avail and/or
Dist Special

ACKNOWLEDGMENTS

The author wishes to thank the following individuals for their
generous support and ideas throughout the preparation of this
report.

Mr. P. R. Bigelow

Mr. W. D. Brentano -
Mr. D. P. Crowson

Mr. BE. C. Grund

Mr. W, E. Miller, Jr.
Mr. W. G. Neumann
Mr. C. D. Poindexter

The author is especially grateful to Mr. D. J. Criscione who recoded
a representative example of JAMPS "C" code using Ada, and to Ms. P.
L. Mintz who provided the JAMPS sizing data included in this
document.

The document has been prepared by The MITRE Corporation under
Project 4100, Contract F19628-84-C-0001. The contract is sponsored
by the Electronic Systems Division, Air Force Systems Command,
Hanscom Air Force Base, Massachusetts.

Sl AT \.“'. NN N (R .-.._.. 0 a Ty
X '\ ') Pt *

y . R L TN T AT W T TN
RO RN, AL LAY ‘ﬂ:;‘i:;_q M ’l‘ Rt LY) AT TN,
! . L ST B LR Ty e,

ROM R A

TVEYE™

TABLE OF CONTENTS

Section . Page
LIST OF ILLUSTRATIONS

LIST OF TABLES

1 INTRODUCTION 9
" 1.1 BACKGROUND 9
1.2 JAMPS HARDWARE CONFIGURATION 10
1.3 FUNDAMENTAL CONCEPTS OF THE EXISTING 10
SOFTWARE ARCHITECTURE FOR JAMPS
1.4 ASSUMPTIONS 13
1.5 CONCLUSIONS 16
1.6 RECOMMENDATIONS 18
1.7 SCOPE 18
2 FEASIBILITY OF DUPLICATING JAMPS SOFTIWARE IN ADA 19
2.1 AVAILABILITY OF ADA COMPILERS FOR MC68000 19
2.2 AVAILABILITY OF ADA PROGRAMMING SUPPORT 20
TOOLS FOR MC68000
2.3 APPROPRIATENESS OF EXISTING ADA RUN TIME 20
ENVIRONMENTS
2.3.1 Ada Run Time Enviroument Defined 23
2.3.2 Formal Requirements for Ada Run 23
Time Enviromments
2.3.3 Optional Features for Ada Run 24
ime Environments
: 2.3.4 Preliminary Selection of Run 25
. Time Enviromments for JAMPS
2.3.5 Comparison of JAMPS Requirements 26

Versus Characteristics of Selected
Ada Run Time Enviromments

R R T R T R S O OF G A, e A SR T L A BT PR N
S S g A T D M AR A NN 2 SN ¥, L T R L E R L

TABLE OF CONTENTS (Continued)

Section _ Page
2.4 PREDICTED RUN TIME PERFORMANCE 32
2.4.1 Benchmark Measurements to Determine 32 .
Execution Times
2.4.2 Context Switching Times 32
2.4.3 Memory Utilization 34)
2.5 COMPILER RELIABILITY 34
2.6 PHYSICAL LIMITATIONS OF THE TELESOFT 35
COMPILER
3 COST FACTORS 36
3.1 SYSTEM REQUIREMENTS SPECIFICATION 36
3.2 CONTRACT MONITORING SUPPORT 37
3.3 SOFTWARE REUSABILITY 37
3.4 TRAINING 38
3.5 SOFTWARE DEVELOPMENT FACILITIES 38
3.6 SOFTWARE ARCHITECTURE 39
3.7 TESTING 39
3.8 PERFORMANCE MEASUREMENTS 40
3.9 REDESIGN OF PROGRAMS WHICH GENERATE 40
"SOURCE TAPES"
3.10 CONFIGURATION MANAGEMENT 40
4 ESTIMATES OF THE LINES OF ADA SOURCE CODE TO 42
BE DEVELOPED
4.1 SIZING ANALYSIS FOR EXISTING JAMPS SOFTWARE 43
4.2 ADJUSTMENTS 43)
4.3 A REPRESENTATIVE EXAMPLE OF "C" RECODED 46
IN "ADA"
4.4 ESTIMATES OF THE NUMBER OF ADA SOURCE 47
STATEMENTS TO BE DEVELOPED i
5 ADA IMPLEMENTATION PLAN 49
5.1 MANPOWER REQUIREMENTS 49
5.2 SCHEDULE REQUIREMENTS 54

P NN T E™ i\

TABLE OF CONTENTS (Concluded)

Section
6 COST ESTIMATION

6.1 METHOD l: ESTIMATED MANPOWER REQUIREMENTS
MULTIPLIED BY ASSUMED LABOR RATES

6.2 METHOD 2: COST ESTIMATION VIA THE COCOMO
MODEL

7 ADVANTAGES AND DISADVANTAGES OF REIMPLEMENTING
JAMPS SOFTWARE IN ADA

7.1 ADVANTAGES
7.2 DISADVANTAGES

REFERENCES

APPENDIX A A REPRESENTATIVE EXAMPLE OF .JAMPS CODE
REWRITTEN IN ADA

Page
57

57

60

64

64
64
65
67

LIST OF ILLUSTRATIONS

Figure Page
1 JAMPS OED System Diagram 11
2 Long Haul Interface 12
3 Data Base Initialization Procedures for JAMPS 14
4 Comparison Between Work Breakdown Structure for a 52 N

Typical Medium Sized Acquisition Program (based
on an HOL other than Ada) with the Work Breakdown
Structure Assumed for Duplicating JAMPS Software
Using Ada.

5 GANTIT Chart for Duplicating JAMPS Software in Ada 55

-« .y“-t q_y ----- e T . Ly
« > ‘\- > o e
PR NO N AN NN F R

AT AT Se® o, ", Wyt e

L I P
\\)‘.\,i.\._

ISR LR RAGLGL CLR LR
AT, % QAL

, ooy
K™ Phal 2

TS VER IRy RN T U U TN TS MO RIS TR TN G A R T I ML A T ey

- LIST OF TABLES
Table Page
1 Survey of Existing Ada Programming Tools for 21
MC68000
§ ' 2 Comparison of JAMPS” Requirements Versus Capa- 27
' bilities of Existing Ada Run Time Environments
- 3 Benchmark Test Results Using the Sieve of 33
Eratosthenes
4 Sizing Analysis for Existing Software Written in "C" 44
. 5 Sizing Data with Adjustments 45
g 6 Conversion from "C" to Ada 47
2 7 Estimates of Source Statements of JAMPS Source Code 48
to be Developed in Ada
8 Ada Implementation Plan ' 50
9 Optimistic Cost Estimate 58
10 Pessimistic Cost Estimate 59
11 Inputs to Cocomo Model 61
12 Results from Cocomo Model . 62
,é 7
S o i YR AR % Y N N N T L

P
PR

SECTION 1

INTRODUCTION

[T

as well as for sending messages to and receiving messages from other
operators in the local group.”

A 1.1 BACKGROUND

B

¥ JINTACCS ig8 an acronym for the Joint Interoperability Tactical

= Command and Control Systems. The JINTACCS Automated Message

! Processing System, JAMPS, 'is a portable set of computer—controlled
equipment for assisting a group of collocated operators in composing

N - and exchanging JINTACCS messages. It provides each operator with a

7§ work station for composing messages and interface equipment for

(S sending and receiving messages over a long~haul communications link,

25

Prototype versions of JAMPS have been designed and built by The
MITRE Corporation. JAMPS has undergone compatibility and inter-
operability testing and operational effectiveness demonstrations
(OED) during military exercises. As a result of these exercises, it
was decided that the principal processing component, the DEC 11/23,
should be replaced with a Motorola MC68000-based computer and a
faster disk to overcome response time problems and generally improve
system performance. The JAMPS software, written in the "C" language

24
;
"z»
\

¢

N A
'-.-“’.p s

3 and executed under the UNIX* operating system, is being transported
¥ to the MC68000 at this time.

Approximately a dozen Air Force organizations have expressed
% interest in reusing JAMPS software (but not necessarily the hard-
= ware) in other military systems. Inasmuch as the "C" language is

not approved for use in DoD acquisition programs and because the use
of Ada will goon become mandatory in many types of defense systems,
the Electronic Systems Division of USAF has asked MITRE to investi-
, gate the feasibility of duplicating JAMPS software in the Ada

. _ language. This document, prepared in response to ESD”s request,

‘ includes estimates for the time, money, and manpower required to

N rewrite JAMPS software in Ada. It also presents the advantages and
disadvantages of undertaking such an effort. This fnvestigation was
jointly funded by Project 4100 (JAMPS) and Project 572D (Ada transi-
tion planning assoclated with the Computer Resources Management
Program PE64740F) and consequently is more thorough than might
otherwise be expected if sponsored by Project 4100 alone.

. b 73:_5.,}1;;‘a$,“;‘i.‘.:§,,' N

¥NIX is a trademark of Bell Laboratories.

9

R

1l 1o e ket B R ,'.L- ELN

1.2 JAMPS HARDWARE CONFIGURATION

There are two types of JAMPS hardware:

1. Work station

2. Information distribution network

The work station hardware to which the JAMPS system is now
transported is for operational demonstration of the JAMPS concept.
It will provide better response time performance and greater storage
capacity than the demonstration hardware used in previous

operational tests.

The upgraded work station includes the following hardware
elements:

o MC68000 computer, 0.5 Mbyte main memory

o Display

o Keyboard

o Storage Device (40 or 70 megabyte Winchester disk drive)

o Printer

0 Q-bus interface hardware

o DEC DLVII-E asynchronous line interface

o DEC DLVII-J four-part RS-232 multiplexer

o Floppy disk drive; 8-inch, .1 Mbyte floppy disks

o biagnostic firmware and control panel
Figures 1 and 2 depict the hardware configuration.
1.3 FUNDAMENTAL CONCEPTS OF THE EXISTING SOFTWARE ARCHITECTURE FOR

JAMPS

All valid JINTACCS message types and formats are under
configuration control by the Army. Information pertaining to
JINTACCS message types and formats is being supplied by the Army on
a magnetic tape ({i.e., the "JINTACCS Tape”) to the Data Processing
Center at Langley AFB, Tactical Air Command (TAC). At the center

10

et e

LML AN I N

\\\\

CPCACA

IRy SRR YA RN LY I) J!
R ‘.‘-“, ‘s'."‘ﬁ"‘q A ELA A,

..................

LONG HAUL LINK

I_ I
| STORAGE | | /\
caTEwAY | \(DEVICE |
VIDEO H
WORK BIU
STATION |\ TERMINAL Ll
| [orNtER | |
LOCAL
L J
BUS
o
(
I R
| STORAGE | |
| DEVICE |
WORK VIDEO b BIU
STATION | | TERMINAL |
|
| PRINTER | |
L — _/
Figure 1. JAMPS OED System Diagram.

A WY S W
* S A AT)

- - gre
", IeH
P iU L LR

11

e € Y AR
PR R A

- o . - .
P2 S RO W RNV i o A

T ST ST TN S VS DT N A BTN IS

Y

L

4

LS00

G,
S AN

LB At

Q-8US TO
WORK STATION
COMPUTER

r“’f’_’l‘

A/
al

s

ASYNCHRONOUS
w : LINE INTERFACE :
‘ IN VIDEO TERMINAL

£ 20MA/EIA
SELECTION

. \ SWITCH
3 / RS-232
: / INTERFACE \
CABLE
/ -\
EIA TO MIL-STD-188C EIA TO 20MA
LOW LEVEL CONVERTER CONVERTER
P % * *
MIL-STD-188C MIL-STD-188C RS-232C
LOW LEVEL HIGH LEVEL (EIA) -
(20MA)

n *LONG HAUL DATA LINK PORTS

Figure 2. Long Haul Interface

12

R AR I I T R L o T R R T N S T " \J
N G OV I 0 N N R B I S AR R T DA IR 3 G

*
K

A
;
S

e i Bog tg Wiy T30 ‘mde et ced Wl Al g Sea St A AATVETG AL S e oA MR DR SRR L AL A

it is reformatted by an off-line batch program on the PDP-11/70,
yielding another kind of tape, known in the JAMPS community as “the
source tape” (figure 3). This "source tape” gerves as the primary
form of input to JAMPS off-line programs. There is concern that the
continued existence of JAMPS may be jeopardized if the Army were to
stop producing JINTACCS tapes or if the Langley Data Processing
Center were to discontinue the maintenance of the program which
reconstructs the JINTACCS data on "source tapes.” The JAMPS project
personnel would prefer to inmput the JINTACCS tape directly,
bypassing the Data Processing Center at Langley AFB altogether.

Off-1line (IBLD) programs in JAMPS read the "source tape” while
generating object data base files for the disk contained in each
work station. Other off-line JAMPS software checks the consistency
and completeness of this disk-resident data. When it is determined
that the disk-resident files are properly populated, the operator is
permitted to load and enable the on-line programs used in real time
operations. The JAMPS on-line software provides real time display
and communication capabilities. The large disk-resident files which
are generated off-line remain unchanged during on-line operations.
Successful operation of the on—line functions depends on the
existence of an error-free data base on disk. Error checking of the
data in disk-resident files is not performed on-line because this
would degrade response-time performance. One of the most signifi-
cant features of JAMPS is that the off-line and on-line programs
need not be modified as the result of changes to JINTACCS message
types and formats.

During the past year, considerable effort has been expended to
measure computer resource utilization by JAMPS on-line programs.
As the result of these efforts, it has been determined that the
responsiveness of the on-line software is being impaired because of
excessive disk-access requests. To remedy this situation, MITRE
personnel have proposed (along with other modifications) that the
disk~file structures be reorganized in a more efficient manner.

1.4 ASSUMPTIONS

o Duplicating JAMPS goftware using Ada will be accomplished as
an acquisition effort by a contractor.

o The Ada software for JAMPS will be procured in accordance
with 300-series regulations. If the normal ESD procurement
practices (800-series regulations) were followed instead,
the software development cost estimates shown herein should
be increased rather substantially, perhaps even doubled.

13

BCaOS A S~ |

Fea . I

I
{
|
SNOILONNA |
WNNOD NV |
AVdSIO _
* |
aNINO _
INM440 .u
|
$NOIHD |
$SINILIVINOD SAVUOONd |
GNV S¥O3HD s34 NOLLYYIN3D 3dvL
AONILSISNOD 193780 asvaviva | 3ounos..
|
NOIHO J0VHOLS swvuooud | . ! NvuDOud
o1 %810) Holve
aNM440
1
| A
N |
suouua
Sdnvr

~ T N P s
T EH s e

Ry U M s s
L _

S$1VNUHO4
GNY SadAL
JOVESAN
SIIVINIF

Data Base Initializaton Procedures for JAMPS

Figure 3.

14

T ek AR AR DAL SR S e D R ™ |

NN Y T T T VR R TR L AN LN AR AN

o0 The development of software in Ada will not be on a
critical-path schedule for JAMPS because the existing
software written in "C" will have already been transported
to the MC68000.

o The requirements baseline used by the comtractor will
include the existing MITRE documentation for JAMPS, with
amendments 1) to update the operator-interface description,
2) to include requirements for response-time performance and
excess processing capabilities (e.g., for future growth),
and 3) to include new requirements for a local area network.

- o The contractor will receive considerable support from the
Alr Force in interpreting the system requirements.

o The existing allocation of functions between hardware and
software in JAMPS will remain unchanged during the
reimplementation using Ada. Therefore, only C level (not A
or B level) documentation need be prepared by the
contractor.

o The current hardware configuration, including the MC68000
computer, will be the basis for software development in Ada,
and the main memory of the computer will be increased to 1-
megabyte capacity.

o The off-line programs used by the Data Processing Center at
Langley AFB to process the JINTACCS tape will be modified by
the government to produce a new type of "source tape” format
vhich substantially reduces the complexity of the off-line
(IBLD) programs in JAMPS; it is assumed that existing JAMPS
off-1ine functions which heavily utilize YACC and LEX
functions will not be duplicated in Ada.

0 Major emphasis will be given to software reusability during
the reimplementation in Ada, and this will increase the
contractor’s costs for software development by 20Z%.

0o The TCP/IP communications handlers availsble in the Berkeley
- UNIX 4.2 (estimated to be 6500 lines of "C" source code) can
easily be incorporated into either the UNIX or the ROS
operating systems used in the two alternative Ada Run Time
Eanvironments available today from Telesoft Corporation.

o The JAMPS software architecture will be fully redesigned by
the contractor in order to take maximum advantage of
desiradble features inherently available in the Ada language.

15

Al G Al A A A G R) |

o The number of source statements to be developed in Ada can
be predicted accurately by applying conversion factors,
based on the results from a recoding experiment, to
extrapolate from the actual sizing data for the existing
software written in "C".

o Programmer productivity in Ada will be moderately less than
that with other higher order languages.

o As an early user of Ada, the JAMPS project is liable to
attract widespread attention within ESD; therefore, the
level of effort for contract monitoring support will be
larger than normal for an undertaking of this size. .

1.5 CONCLUSIONS

o The current status of Ada programming support environments
for the MCG8U00, including but not limited to Ada compilers,
is not adequate for duplicating JAMPS software in Ada today.
However, the programming tools available from one software
vendor, Telesoft, are expected to improve sufficiently over
the next year so that the use of Ada for JAMPS can be
undertaken in FY85. The Ada programming support tools
currently offered by a second software vendor, Irvine
Computer Sciences Corporation, are judged to be less
adequate than those of Telesoft at this time, but will
be of potential interest if redevelopment of JAMPS goftware
in Ada begins late in FYS85.

o The feasibility of using Ada to duplicate JAMPS software
will be determined largely by the characteristics of the
particular compiler implementations (and Ada run time
environments) for the MC68000; the Ada language itself is
not the problem. Certain optional features need to be added
to the existing Ada run time environments in order for any
of these environments to be amenable for use in the JAMPS
application. The development schedules for such
enhancements are not known precisely, but it is our
assessment that the necessary improvements will have been -
completed by FYS8S,

o The total cost to duplicate JAMPS goftware in Ada {s
estimated to be $4.5M (1983 dollars). This estimate
includes work to be performed by a software contractor,
contract monitoring support, software redesign by the Data
Processing Center at Langley AFB, consulting services, and

16

D LA TN, St v 2N, .‘ r 1,50 > “ o .~\' h “v, ‘ ‘:l .'\ W,

o s G - (e e W kg R F PRI "R "RPESR RIS T TR AR TRV TPFTIRCP CREWIYCTRREOWORTI O LA V

the acquisition of appropriate computing facilities and
programming support tools for Ada software developaent. An
upper bound for the totsl cost for reimplementation in Ada,
based on various pessimistic assumptions, is $6.3M.

o The existing JAMPS goftware written in "C" will be awkward
to modify for use in other systems because the record
formats for disk files are not explicitly defined (in "C"
source code) and are only partially described. In
addition, the "C” software was not developed with reusa-
bility in mind, and therefore machine dependencies, compiler
dependencies, and run time environment dependencies have not
been carefully isolated and encapsulated in geparate modules
with appropriate annotations and documentation.

o The reliability of object code generated by incomplete
versions of the compilers currently available for the
MC68000 1is fairly good.

o Early indications suggest that the response-time performance
of Ada-compiled programs in the MC68000 will be satisfactory
for use in JAMPS.

0 A separate Ada software development facility will be needed
for JAMPS; the memory size of the JAMPS MC68000 (and disk
unit) is not adequate for an Ada compiler which must have
access to extensive software libraries (source/object code).

o Software development in Ada on the MC68000 will be impeded
by the unavailability of suitable tools for configuration
control and performance measurement, and therefore the Air
Force will be obliged to develop its own tools for these

purposes.

o - JAMPS offers an unusually good situation for early use of
the Ada language because the system already exists and any
reimplementation in Ada will not be driven by the tight
development schedules which often characterize ESD procure-
ment efforts. The amount of code to be developed in Ada is
far less than the average size C3I system. The potential
for reuse of JAMPS software in other systems is unusually
high.

o The investment to date {n "C" language software for JAMPS {s
very substantial (15 man-years of MITRE effort and 5 man-
years of Air Force personnel time), perhaps 3 man-years of
which would be recoverable if JAMPS software were to be

- reimplemented in Ada.

17

a mpe 4o

. - - -
i Wi
s TR N R VA Y L e Qe A Ry T T Wy

a b e biedes e i e She Rin iy 2B 00 R s AT R RO EASTAN Bl S B IELA N ATRASG N ARSI i AL IR RS |

1.6 RECOMMENDATIONS

o Do not undertake an effort to duplicate JAMPS software in
Ada until such time as a suitable compiler with an
appropriate run time environment is fully available and has
been validated by the Ads Joint Program Office. 1In
addition, other necessary Ada programming support tools
should also be readily obtainable.

1.7 SCOPE

The remainder of this report is organized into four major
sections as follows:

o Feasibility of duplicating JAMPS software using Ada

o Estimated number of source statements of Ada to be developed
for JAMPS

o Manpower, schedule, and cost estimates

o Advantages and disadvantages of téinplelenting JAMPS
software in Ada.

18

L _ L Al oA Ty R VLWL EwY £op bl & §:4 EVIF AT ELUTATIRARAIS SN VAN SNV NN Y

SECTION 2

FEASIBILITY OF DUPLICATING JAMPS SOFTWARE IN ADA

Issues surrounding the feasibility of duplicating JAMPS
software in Ada are presented in the following order:

o Availability of Ada compilers for the MC68000

o Availability of Ada programming support tools for the
- MC68000

o Appropriateness of existing Ada run time environments

0 Predicted run time performance
o Compiler reliability

o Physical limitations of Telesoft”s Ada compllers

2.1 AVAILABILITY OF ADA COMPILERS FOR THE MC68000

Telesoft Corporation{2] and Irvine Computer Sciences
Corporation (ICSC)[3] are the only firms which have formally
announced the availability of Ada compilers for the MC68000. The
Telesoft and ICSC Ada compilers do not presently support the full
Ada language and therefore are not ready to be validated by the Ada
Joint Program Office. Accordingly, these compilers are unsuitable
for use in DoD acquisition programs (per draft DoD Directive
5000.31[4]). However, both Telesoft and ICSC claim that their
compilers will be ready for validation in 1984.

As will be explained further on, Telesoft has many different
versions of the Ada compiler for the MC68000 and not all of thea
appear to be suitable for the JAMPS application. The order in which
the many different versions of the Telesoft compiler will reach
completion and undergo validation tests is unclear. It is entirely
possible that some of the Telesoft compiler versions will never be
fully developed and therefore will never be validated. Finally,
there is only one version of the ICSC Ada compiler for the MC68000
and its development schedule is also undetermined.

19

SISO RN RAR A PR IR TR AR T SR TR FN N TR TR SET R TR TR TR T NETRIV TR TREL TS I TATA SIS TR ETATe PR

s

e "
ey e

¢

P
LYW

2.2 AVAILABILITY OF ADA PROGRAMMING SUPPORT TOOLS FOR MC68000

DoD has issued a nonbinding set of guidelines{ 6] for support
tools to be used in conjunction with compilers for Ada software
development. In table 1, these DoD guidelines are compared with the
tool capabilities offered by Telesoft and by ICSC for the MC68000.
This information in table 1 is based upon sales brochures and
telephone communications with marketing representatives. It appears
that the lack of tools for configuration control and performance
analysis (static and dynamic analyzers) will significantly hinder
any attempts to duplicate JAMPS software in Ada. Such tools could
be procured directly from a software vendor, but this would
significantly increase the budget required for recoding of JAMPS
software in Ada.

2.3 APPROPRIATENESS OF EXISTING ADA RUN TIME ENVIRONMENTS

JAMPS software can easily be recoded in Ada. Nevertheless,
recoding in Ada may not be a practical course of action. The
appropriateness of the existing Ada run time environments, more than
anything else, will determine the feasibility of duplicating JAMPS
software using Ada. As a programming language, Ada has eliminated
many of the fundamental design choices which traditionally have been
made by applications software designers. Although the syntax of the
Ada language has been rigorously standardized, many of the features
of Ada run time enviromments have been left to the discretion of the
individual compiler designer. For this reason, the selection of a
compiler based on an inappropriate run time environment can kill a
project before a single line of applications code has been written.
The question "can we use Ada" is meaningless because there are many
degrees of freedom in the design of Ada compilers. It is more
reasonable to ask “can we use a specific compiler (i{.e., one of the
many different Ada Telesoft compilers or the ICSC compiler targeted
to the MC68000) for the JAMPS project?”

The ensuing discussion of run time environments is organized as
follows:

0 Definition of "Ada run time environment”
o Formal requirements for Ada run time environments
o Optional features for Ada run time environments

o Comparison between JAMPS” needs versus capabilities available
with existing Ada run time environments

20

DA (TN T, T A A o T e 3 T Aty T D e e p N

» o "w > \"
P i e 4 A : . 'l . CMIALS N

T]
e Pl i

RSN

. T

Nt e

Table 1

il Bk AL AR K AL bl Gl Aal b E Ok wdt Sl AA S Ul \‘.(T‘

Survey of Existing Ada Programming Support Tools for MC68000

Software Tool

Text Editor (for
entering and modi-
fying Ada source code)

Pretty Printer (for
printing text in leg~
ible formats)

Compiler (for trans-
lating Ada source code
into object code for
execution on MC68000)

Linkers (for resolving
interfaces between
separately compiled
modules, forming
executable programs)

Loaders (for loading
executable programs
in both host and
target computers)

Symbolic debugger (for

snapshots, traces, etc.)

Static analyzer (for
data item set-use
1istings, cross-
reference maps,
calling relationships)

Dynamic analysis tools
(frequency analyzer,
timing analyzer)

Telesoft/LabTek
Status

Available now from
Telesoft

Available now from

. LabTek with WICAT

version of MC68000

Available in partial
form now; should be
fully available in
1984

Available now from
Telesoft

Available nov from
Telesoft.

Under development at
Telesoft; due for
delivery in 1984.

Not available; not
currently in develop-
ment.

Generally not avail-
able; LabTek offers a
simple routine for
measuring single-thread
execution times.

21

ICSC
Status

Available now

Unavailable

Available now in
partial form;
should be fully
available in 1984

Available now
from ICSC

Available now

Not available;
not in develop-
ment.

Not available;
not in develop-
ment L 2

Not available;
not in develop-
ment.

T o

%’és

NI NER S N NP o L e LR T L AN

Table 1 (Concluded)

Survey of Existing Ada Programming Support Tools for MC68000

Software Tool

Terminal Interface
Routines

Command Interpreter
(accepts commands
to invoke tools)

Configuration Manage-
ment Tools

Stub Generator (to
insert dummy program
elements

R PEITRINT ¥

¥, o WAY)

[
LI g}

R SR S T e

Telesoft/LabTek
Status

Available now from
Telesoft

Available now from
Telesoft

Not available; not
currently in develop-
ment

Not available; not

currently in develop-
ment

ICSC
Status

Available now

Available now

Not available;
not in develop-
ment

Not available;
not in develop-
ment

&3 ot rs. 'l o) gt Y o8 4t 134 AR AN AR Tl e £ At Al Anl Fally nile Saile A% SRRty LAk AR T R T AT MRS TG G G LR

NE
v
-~ gpm—
oM
i
M
N 2.3.1 Ada Run Time Environment Defined
4
L J The following material is quoted from "The Ada Run Time
[<< Enviromment," a lecture given by Dr. Joseph K. Cross, Sperry UNIVAC,
N at an AdaTEC Meeting, held in Dallas, Texas, on 20 October 1983:
s "An Ada run time environment is, roughly, the set of
P target-machine facilities that an Ada compiler can use to carry out
gvj the run—-time operations required by Ada programs. Those facilities
q';% consist of the instruction set provided by the physical target
i&w i machine, possibly with additions and deletions. Additions to the
o facilities provided by the physical target machine”s instruction set
o are generally provided by some predefined software, such as an
Eﬁﬁ - executive, that in the compiler”s eyes, might as well be implemented
Ty in hardware. Other additions to the physical target machine’s
{é; facilities can be provided by additional hardware, such as an array
i processor, and by user microcode. Deletions from the physical
e target machine”s facilities generally result from a conscious
gf}ﬁ decision not to use some capability, generally in the interest of
gg%% safety or simplicity. For example, after it had been decided to use
iy a certain executive in the target machine, it might be determined
féﬁ that all code emitted by the Ada compiler will only run in the task
e gtate; then, the privileged instructions in the hardwzre”s
" instruction set would not be usable by the Ada compiler, and would
Ay therefore not be part of the run time environment."
B
f}%: "After the target hardware has been chosen [i.e., the MC68000],
%ﬁ after any predefined software [l1.e., UNIX operating system, math

“
al
4,

L
hY

routines, etc.] have been specified, and after all restrictions and
conventions have been imposed, the compiler sees as a new target
machine the virtual target machine for which all code is actually to
be emitted. To the compiler, this virtual target machine i{s as
different from the original physical target as if it were a
different box: for example, the virtual box may have a SINE
instruction while the physical machine did not, and the physical
machine might let any register be used as a stack pointer while the
virtual machine reserves register 15 for that purpose.”

Y

2.3.2 Formal Requirements for Ada Run Time Environments

The Ada Language Reference Manual[6] levies a minimal number

- - | of requirements on run time enviromments. These requirements are
_43 summarized as follows:

¢

g?ﬁi o Operations -- (e.g., addition, comparison, assigmment,
?%{ indexing) on various kinds of values (e.g., integer,

Porh floating and fixed point Boolean, record, array). Branches
o (GO TO, IF, CASE, LOOP Subprogram CALL, and Return) are

also required.

o 23

‘;;i/i

X

oL
24y v

B

o
™~

.
-

o

o

o

Tasking -~ (creation/destruction of tasks, activation/
abortion/termination of tasks, execution (start/stop) and
rendezvous (simultaneous synchronization and data
interchange)).

Input/Output ——- (sequential, direct access, text, and
low-level 1/0).

Exception Processing -- (Ada requires that certain errors be
detected at run-time, such as an attempt to assign the value
11 to a variable that has been declared tc hold only values
between 1 and 10. Such a run-time error is called an
exception, and the result of an exception is to transfer
control to a user—specified exception handler).

Memory Management -— (ability to store and retrieve values).

2.3.3 Optional Features for Ada Run Time Environments

This section provides examples of the facilities that a
run time enviromment may provide over and above those that are
required as described in section 2.3.2. The list is illustrative
and does not attempt to exhaust the full set of possibilities.

o

Interrupt Handling. In Ada, an interrupt is treated like an
entry call from an invisible task of very high priority.
Hence a run time environment can satisfy the letter of the
law by treating interrupts just like any other tasking
operation. In some cases, JAMPS might need some form of
expedited dispatching for such things as character—echo at
the display console; interrupt handling tasks may be given
control directly upon receipt of the interrupt, and without
intervening enqueuing, scheduling decision, and dequeuing of
a request. Also, advantage may be taken of the hardware
register-saving capabilities.

Fancy Memory Management. Use of overlays, nonresident data,
and garbage collection.

Distributed Processing and Multiprocessing. The virtual
machine on which an Ada program runs may have more than one
processor; the Ada language definition leaves these issues
up to the compiler designer.

Multiprogramming. Various processing priorities may be

assigned individually to Ada task programs and the run time
environment may provide preemptive scheduling capabilities.

24

" - .l‘
“

".- ".".-. K ‘*. "‘-

i-‘;§’$“‘“ Ko s e 4ie A P 8 o St s ik aiChi Ot S . A oy L W ! JAa A e i Y iy And, Gui el Sl LE TR TA T e Te T 'I-,.\W

o Fancy 1/0. Asynchronous 1/0, formatted 1/0, use of key
words.

2.3.4 Preliminary Selection of Run-Time Environments for JAMPS

At the outset, there are four versions of the Telesoft Ada

T3 compiler to be considered. These four versions are differentiated
%%% on the basis of their respective run time environments as follows:
;%“, : o P-code interpreter under the UNIX operating system
ey 0 P-code interpreter under the ROS operating system
% 59: -
§§§ o Machine code executed under UNIX (analogous to the ICSC
N compiler)

o o Machine code executed under ROS
F$E Two versions of the Telesoft Ada compiler generate P-code (a
152 Pascal derivative). The front-end of the compiler generates P-code
ﬁ{% on a host computer (VAX, IBM 370, or MC68000) and this intermediate
QE& form is then downloaded into the target computer (the MC68000 in

- JAMPS) where it is interpreted on-line by the "Run Time Kermel”
. (1.e., run time environment software). This means that the final
L part of translation and execution occur more or less simultaneously.
B For real-time applications, the use of an interpreter in an Ada run
o time enviromment would be a mistake; the response-time performance
Ui} with an interpreter would be intolerably slow.
o Two more recent versions of the Telesoft-Ada compiler plus the
3{§ ICSC compiler all emit low-level (machine language) outputs. These
EREY compilers convert Ada source code into object programs in machine
:ﬂ% language form which can then be downloaded (from the host) into the
B target computer for execution under the control of an Ada run time
—— environment. This second type of compiler is potentially of
il interest for use in development of software for JAMPS.
FEx
égﬁ Telesoft provides two different run time environments based on
S the UNIX and the ROS operating systems, respectively. Progranms
§$§. : compiled via the ICSC~Ada compiler will only execute under UNIX.
- Telesoft-UNIX requires a lot more memory (260 Kbytes) than ROS (80
oo Kbytes) in the target computer. UNIX is reputed to be significantly
3%% slower and more unwieldy for real time applications than ROS.
‘k; Nevertheless, the use of UNIX in other systems is so widespread that
,k 1 in the interest of promoting widespread reusability of JAMPS
R software, the run time environment based on execution of machine
—— code under UNIX should be seriously considered.
i
%;l 25
&

. PEPEAR A WA R % o , A >\ : TS BT AT N T A S N AT A A DRI 1,y A

]

L e D At g Wt 3 ke - gt R R i W Rk et et Dk by R O o) O S R 8 p oMLt L L gt S S K S s i e e AR A R s |

el St

Ay
5NApd

STt

2.3.5 Comparison of JAMPS Requirements Versus the Characteristics
of Selected Ada Run Time Environments

T

VP

Table 2 shows a comparison between JAMPS requirements versus
capabilities available with various Ada run time environments. It
is assumed that the JAMPS program will have been compiled into
machine language format. It is further assumed that all of the
formal requirements for an Ada run time environment (see section
2.3.2) will have been satisfied by the time any Ada compiler is
validated by the Ada Joint Program Office. Hence, only the optional
features (such as those mentioned in section 2.3.3) need be care-
fully analyzed in this report. Unless stated otherwise in table 2,
the characteristics of the ROS- and UNIX-based run time environments
R are believed to be the same.

v

B R e i

Inspection of table 2 will reveal that even the most promising
of the Ada run time enviromments (i.e., Telesoft”s environment which
controls the execution of machine code under ROS) does not come
close to satisfying the needs of JAMPS at this time. However, since
Telesoft claims that it plans to implement new features which will
rectify most of the deficiencies noted herein, it will be reasonable
to reevaluate the situation in six to nine months*. The current
status of the ICSC run time environment suggests that it will not be
ready for use by JAMPS programmers for quite some time. The
information shown in table 2 is based on telephone conversations
with representatives of Telesoft and ICSC, and cannot easily be
substantiated because published reports describing the features of
the various alternative run time environments are not available from
the vendors.

2 A LS4

I

I ;Télesoft, a relatively small software house, is believed to have a
current backlog of 20 contracts for retargeting its Ada compiler to
various different types of computers. It appears that Telesoft is
not inj a position to undertake an additional contract in the
sbmy?

N

term to develop a customized run time environment for JAMPS.

Vb o a e e

N

26

g e * Lt) !.)

e .‘v.'.."~-‘ \ ..) ‘ ' L q. AN s

Sty

)

JAMPS
Requirements

Task Management
Requirements

4

3 et

R

Multiprogramming

No restrictions on
the number of dif-
ferent separately-
scheduled tasks

Multitasking

A

Expedited dis-
patching (character
echo)

No restrictions on
x size of packages,
b tasks, subprograms

s No restrictions on
3 the number of "main”
- programs, with pro-
visions for commu-
nications between
"main programs.”

e W A CRd Tl R i PN MO RSP ST BALE R A l h R IRN

Table 2

Comparison of JAMPS” Requirements Versus Capability
of Existing Ada Run Time Enviromments

Telesoft Run Time ICSC Run Time

Environment Environment
No capabilities for
See below tasking at this

time. Future plans
for task management
are undefined.

Not available at this
time; the Priority Pragma
is supposed to be imple-
mented with ROS during
1984.

Currently limited to 32
tasks; this restriction is

is due to be removed in
1984,

Supports sharing of data
and pointers between tasks
(at most, 256 words can be
exchanged).

Currently available, with
100 usec delay as an upper
bound .

Currently, individual pack-
ages are restricted to 32
Kbytes, but this limitation
is expected to be removed
during 1984,

"Main” programs cannot

run concurrently; restrict-
ed to one 32-bit word for
communication between two
main programs.

27

" ‘3211513333&1&15;11&131

A I |

K3
Ry
}1‘[
»
b
h

T

Lottt ol 7ad o2t 2SR O SRARENEL A RS MA LAR T LTS e al) thl g WL\X‘&\}\‘-‘I\‘*

Table 2 (Continued)

Comparison of JAMPS”~ Requirements Versus Capability
of Existing Ada Run Time Environments

JAMPS
Requirements

Memory Management
Requirements:

Detection of 80%
saturation of
dynamic memory areas

No restrictions on
number of levels
of nested pro-
cedures

No arbitrary limit
on dynamic memory
space allocated to
individual task
programs.

File lock/unlock
services

Telesoft Run Time
Environment

Not available. JAMPS
software designers must
provide a workaround
in their applications
software.

Currently, dynamic
memory is exhausted
after four levels of
nesting (vhen machine
runs out of registers
used for this purpose).
The compiler is being
redegigned to circum-
vent this limitation.

Currently fixed at

4 Kbytes/task, 32 Kbytes/
package. In subsequent
coapiler releases, the
programmer will be
permitted to statically
assign as much dynamic
memory space as his
program requires.

Can use Ada’s Rendez~
vous construct for this
purpose.

28

ICSC Run Time
Enviromment

Not available

Unknown

No restrictions
on dynamic memory
space.

Same as for
Telesoft.

DA NAMRNL SIS AN

A

‘ .

L AL Al R cter g i e e ol - oty M bk - 8 e m b [. - . - P g

Table 2 (Continued)
Comparison of JAMPS” Requirements Versus Capability
of Existing Ada Run Time Environments

JAMPS Telesoft Run Time ICSC Run Time
Requirements Environment Environment

No restrictions on Not currently avail- Same as for
menory space for able, but restriction Telesoft.

. Access Types as is due to be removed

seen by individ- during 1984.

ual packages, tasks,

subprograms

Digk-file access Curtently available. Currently avail-
R either by serial able.
' or by indexed-
sequential addres-
sing techniques.

Operations

Data manipulation Currently supported. Unknown
capabilities for

= two dimensional

e arrays.

s

Can perform opera- Currently supported. Unknown
tions on disk records

without having to

move thea from 1/0

buffer areas before

hand.

Desirable feature: Not supported.
Can perform opera- Low-1level 1/0
tions on low—-level buffer space is

1/0 data (e.g., limited to 8 Kbytes. L
communications

data) without

5 having to move the
S data from the I/0
N buffer areas before-

hand.

29

RN e T e sy

S F O T T)
M w

'.*".,.‘(‘..

()

,v\.
W

Table 2 (Continued)

Comparison of JAMPS” Requirements Versus Capability
of Existing Ada Run Time Enviromments

JAMPS
Requirements

1/0 Management

om——

Requirements

Asynchronous 1/0
for character and
block-oriented
devices.

Text 1/0
Low~level 1/0

Device driver for
a telephone modem
connection.

Other device drivers
(floppy disk, CRT,
Winchester disk)

Date/time Support

Disk 1I/0 driver
accommodates indi-
vidual records which
are up to 8 Kbytes
in length.

System Initializa-

tion Requirements

Flush out of 1/0
buffer areas (de-
sirable feature but
not a requirement)

RNy IR

R A AL e e e

Telesoft Run Time
Environment

Currently available.

Currently available.

Currently available.

Not currently available.

Currently available.

Currently available;

time to nearest second.

Currently available.

Not available.

Programs which rely upon

use of uninitialized

variables are erroneous.

30

ICSC Run Time
Environment

Not currently
available.

Currently available.

Currently available.

Unknown

Currently available.

Unknown

Not available.

Table 2 (Concluded)

Comparison of JAMPS® Requirements Versus Capability
of Existing Ada Run Time Environments

JAMPS
Requirements
Capability for
assigning logical

units to physical
devices (consoles)

Optimization Support

Can optimize run
time gystem either
for faster execu-
tion or for reduced
memory use.

Ability to interface
Ada-compiled pro~
grams with other
programs written in
"C" language; al-
though not an
absolute necessity,
this feature is
highly desirable.

Ability to use in-
line code in lieu
of procedural calls
to the run time
enviromment.

Suppression of Range
Checks in order to
improve response
time performance.

Telesoft Run Time
Environment

Unknown

Currently available
with ROS

Pragma Interface to

to other languages

18 not supported; nor
are there any immediate
plans to implement this

Pragma.

In-line Pragma is not
currently available but
is supposed to be
supported in 1984,

The Suppress Pragma is
currently supported
by Telesoft”s compiler.

31

. [N I S LN e, e v,
. .ff.."’_- et

A
£ L SR LY

ICSC Run Time
Environment

Unknown

Unknown

Currently avail-
able.

Unknown

Currently avail-
able.

[}

2.4 PREDICTED RUN TIME PERFORMANCE

The expected performance of Ada-compiled programs in the
embedded MC68000 computer i{s a matter of paramount concern. Some of
the early Ada compiler implementations are reputed to produce very
inefficient object code. There are no formal requirements placed on
Ada compilers for object code efficiency.

Run time performance will be discussed as follows:

o Benchmark measurements to determine execution times

o Context switching times

0 Memory use

2.4.1 Benchmark Measuremsnts to Determine Execution Times

One very popular yardstick for comparing the performance of
higher-level languages in various microcomputers is a simple
benchmark program based on the Sieve of Eratosthenes[7). This
program finds all of the prime numbers between 3 and 1638l.

The benchmark test results shown in table 3 are only one crude
indication that Telesoft”s Ada/ROS compiler implementation will
satisfy the response time requirements for JAMPS. It is assumed
that the existing software written in "C” language will perform
satisfactorily in the MC68000 and that on the basis of the timing
data shown in table 3, the C code and Ada/ROS programs can be
expected to run roughly at the same speed. It is unknown just how
much degradation in response time performance can be expected if ROS
were to be replaced by UNIX.

2.4.2 Context Switching Times

The time required to respond to an interrupt, suspend the
current task and schedule the execution of another task is referred
to as “"context switching time.” In clumsy run time environments
based on operating systems intended for use in software development
systems (i.e., not for use in real-time embedded computer
applications), context switching tiaes are typically 5-10
milliseconds in length; for some types of real-time applications,
context switching times of this length would be intolerable.
Telesoft claims that its Ada/ROS run time environment for the
MC68000 will accomplish context switching in 0.5-1.0 milliseconds,
and this length of delay appears to be quite reasonable for the
JAMPS application.

32

. Y oS o i o 3
7

AELE LY CL NS PN g1 o JRg e oNp ot el dint R el < gl Tl Rl ol S Sl n S N A4 S AR 2 Nt L Rl el S R R |

Table 3

Benchmark Test Results Using the Sieve of Eratosthenes[7]

N Computer
o - MC68000, 8 MHz
(Sun pm 68K)

- MC68000, 8 MHz
b HP-9830

MC68000, WICAT,
150 WS

MC68000, Charles
River 68

MC68000, 8 MHz
EXOP MACS

MC68000, 8 MHz

Operating
Systea

ROS

ROS

MCS/UNIX

UNOS

Not available

Not available

33

Language
Ada (Telesoft)

Ada (Telesoft)

C (Johnson)

C (Whitesmiths)

Alseibly

IR I
&‘r‘\¢~ \..ﬁ Y, "

(seconds)

Execution
Time

4.4

5.0

4.71

6.3

9.82

0.49

NN \; A ATy

3 pala

R
P e, o

?.

2.4.3 Memory Use

The on~-line and off-line JAMPS software written in "C" amount
to 9,953 and 4,944 source statements of C source code, respectively;
(see table 5 in section 4.4). On the basis of a recoding experiment
described in section 4.3, it appears that Ada requires 462 more
. source gtatements than “C" for equivalent functions. Hence, 14,531
o Ada source statements will be required for the JAMPS on-line
p functions (a separate memory overlay). On the basis of this same

: experiment, on the average, each complete Ada source statement
generated 24.8 bytes of object code. 1t follows that the online
) applications software will occupy 360 Kbytes* (14,531 x 24.8 = 360K)
g of memory. The UNIX and ROS run time environments require an
additional 260 Kbytes and 80 Kbytes, respectively. Therefore, JAMPS
software written in Ada will require a main memory size of .75 to

52 1.0 megabytes, and this does not appear to be a cause for concern.
i 2.5 COMPILER RELIABILITY
Y

The object code generated by immature compilers frequently
doesn”t execute properly (i.e., is unreliable). However, Telesoft
has already sold 350 of its Ada compilers, and their widespread
early use has allowed these compilers to mature at an unusually
rapid pace. The consenus is that Telesoft Ada compilers are
reliable enough to be useful, although workarounds are frequently
required because significant features of the Ada language are not
yet supported. Singer-Librascope[8], for example, claims to have
successfully used a Telesoft Ada compiler for the MC68000 on two
different acquisition projects.

e

Error diagnostics generated by immature compilers are
L frequently meaningless to applications programmers. However, at the
bR AdaTEC meeting in Dallas (October 1983), Telesoft successfully
. demonstrated that their compiler underlines the offending clauses in
erroneous Ada source statements; references to applicable sections
b of the Ada Language Reference Manual were observed to be appended to
o the faulty source statements as well. Nevertheless, while using the
o Telesoft Ada compiler on the WICAT computer at MITRE, a number of
abstruse (unhelpful) error diagnostics have been observed and
several compiler crashes have occurred. The apparent discrepancies
between the demonstration in Dallas versus the Telesoft compiler
performance at MITRE, Bedford are attributed to recent enhancements
which are not yet available in the compilers released to the public.

PRty 2

*The existing JAMPS on-line software written in "C", which does not
include local area network functions included in the sizing
1 estimate for Ada~-compiled programs, occupies 234 Kbytes.
34

\

P

%
peN

L4 Eoim

e)
WL

:f ot 4

AW LG

ot
.

ety
s
b

s i

oL

e
e

T o
R
PR A »_;‘

3o

N

't
;X3

o

Lo

g

In part, the feasibility of duplicating JAMPS software in Ada
may hinge on the availability of quick maintenance support for Ada
software development tools. Telesoft is a small fira (15 employees
as of 1 February 1983), and it 1is uncertain whether an organization
of this size can provide adequate maintenance support to many users.
LabTek 18 an even smaller company which sells systems including
WICAT machines (based on MC68000) in combination with Telesoft”s Ada
software development tools. 1In the past, LabTek has generously
provided a lot of free advice to MITRE personnel when they were
experiencing problems using the Telesoft Ada compiler. In many
instances, these were programmer problems, not compiler errors. It
has been more difficult to obtain answers from Telesoft directly.
However, Telesoft does seem to be distributing improved versions of
its compilers at intervals of once every two to three months.

2.6 PHYSICAL LIMITATIONS OF THE TELESOFT COMPILER

The limitations of the Telesoft Ada compiler have not been
fully determined. However, users of the Telesoft computer do not
seem to be voicing many objections in this regard. The following
data summarizes several telephone conversations with marketing
representatives:

0 Maximum number of lines of source code per compilation
module greatly exceeds any requirement which JAMPS might
impose, and therefore is not regarded as a potential area
for concern.

0 Maximum size of symbol table < 128 Kbytes.
o Compilation speed < 300 lines of source code/minute.

o Maximum number of simultaneous compilations (in parallel on
same host computer) = 1, This limitation is significant.
The schedule for reimplementing JAMPS software in Ada needs
to be stretched out because the number of programmers who
can access the host computer will be quite limited.
Alternatively, more than one host computer might be used,
but that approach will compound the problems of software
configuration control.

35

h ‘3;.0.) W, .‘I.l“ 0, l'q'l\ ¢+, ‘.. '.'l';‘\‘.'. . [J‘ X [l g Ml X5 N .»l .., Net Ay K

-

[bty A5 s i e
e ind b 005 mm 2

AR, A

SRy
)_’,g

h';r;‘

Pt R

¥

P

At

S

| ZALA S

o,

s
P

i b

*,
ot

w b

P AR T T st

1
iyl SN

r
r

»

-

AR RS Lk LA R T b LR A TN LA XN SN T < ¢

SECTION 3

COST FACTORS

Factors which need to be taken into account while preparing
cost estimates for duplicating JAMPS software in Ada are discussed
as follows:

0 System requirements specification

o Contract monitoring support

o Software reusability

o Training

o Software development facilities

o Software architecture

o Testing

o Performance measurements

o Redesign of programs which generate "source tapes”

o Configuration management

3.1 SYSTEM REQUIREMENTS SPECIFICATION

The requirements specification for JAMPS was not prepared in
accordance with military standards and in some ways is not entirely
appropriate for use by an independent contractor for an acquisition
program. However, with ample support from the government, an
amended version of the requirements specification will suffice. The
requirements baseline for JAMPS is expected to be fairly stable
during the next several years.

Inasmuch as The MITRE Corporation has already developed a
prototype model of the JAMPS system, it {s anticipated that the
amount of system engineering work to be accomplished by the con-
tractor will be less than normal for a project of this size.
Functional allocations between hardware and software have already
been determined. The operator interface is well defined.

36

P I "'g h S ‘.. \._ ... -.' .' ‘..." .. . '.w-.. “_-I‘-._ -'_. . c e ta* .-

&) Chat T S A= i o SR AL MR R A A AR A S AR N M S O e I P S |

?‘f - LY Lot e e N e e e e L

)')

e,

l"f-

o %

o ¢

% 1

i

.

: % 3.2 CONTRACT MONITORING SUPPORT

:ﬂ An unusually high level of contract monitoring support will be

DX necessary for several reasons:

- o It is assumed that an entirely new set of disk file

3 structures will be defined for JAMPS, and this will not be

. an easy task. The new file structures should be designed to

poe - facilitate the use of Ada and must be considered when the

34 government undertakes redesign of the off-line programs at

the Langley Data Processing Center.

$' o Many things need to be done* to establish and monitor a

B contract involving the use of Ada; there is little

o precedent within ESD which can be drawn upon for these

B purposes.

, , o It is anticipated that the JAMPS efforts to use Ada will

™ attract widespread attention within ESD. Documents

e describing the "software methodology while designing in Ada”

, and "lessons learned while applying Ada™ will be required in

& addition to the standard forms of software documentation

which are normally required of DoD contractors.

2§ 3.3 SOFTWARE REUSABILITY

Eﬁf The strictness of Ada compiler validation reduces, but does not
eliminate, the problems of software portability and reusability. It

%” costs more and takes longer to prepare software that is easily

v reusable, regardless of which programming language is used[9].

oy Programming standards and conventions which require isolation of

compiler dependencies (e.g., differences in computational
efficiency), and run time environment dependencies (e.g., expedited
dispatching) must be rigidly enforced. It is intuitively estimated

N machine dependencies (e.g., precision of fixed point arithmetic),

¥ that designing for software reusability will increase development
EQ costs by 20X and that this will more than pay for itself if JAMPS
»ﬁq : software is to be reused in numerous other systems. There is no
48 empirical data available to support this intuitive estimate.
=
Qh‘ *Preparation of RFP, IFPP, Proposal Evaluation Criteria, policy
<o decisions relative to the use of Ada~based Program Design Language
fath in formal software documentation, guidelines for Ada programming
- style (standards and conventions), etc.
“:1 37
1
5
.‘ N
~
0‘
| ‘ . o, ..-. .. ‘-\’.. ..'.,. \. \. '&' 8! - .'- ﬁ": o’ \-\-Y - L N* \. N 1 ‘\] ?‘ - - f{f - ‘

A

R

SOO0scEy {

[} ."J‘,.T » v -
SR

-
Y —~
g g Lo

P]

!!E‘E il

%

FAAS

Ls
LR SN

30

¥ P‘“NKVU‘*
ot M V")

‘“5‘,&:5’J §

=

v

It is noted that the existing software written in "C" was not
prepared with reusability in mind, and, as a consequence, is
expected to be fairly awkward to incorporate in other systems. It
is also observed that the reusability of JAMPS software written in
Ada will be diminished by any dependence upon the availability of
gspecific features in an Ada run time environment which are not
required by MIL-STD-1815A (Ada Language Reference Manual).

3.4 TRAINING

Program management and contractor personnel will probably need
extensive training, both in the Ada syntax and especially in the
software engineering principles upon which the Ada language is
based. Every individual involved should have at least four weeks of
formal training in Ada. Additional training in the preparation of
reusable software is highly recommended. It is also suggested that
the consulting services of an Ada expert be made available to the
JAMPS project, especially during the early stages of development;
this individual will critique the first attempts by JAMPS
programmers to use Ada.

DoD policy disallows programmer training as an expense which
can be directly charged to an acquisition project*. Nevertheless,
during the transition period in which most programmers will be
unfamiliar with the Ada language, it is inevitable that some amount
of training will be required.

3.5 SOFTWARE DEVELOPMENT FACILITIES

The Telesoft Ada compiler requires a l-megabyte main memory and
a l5-megabyte disk storage unit. Configuration management of Ada
source and object code files is expected to increase disk storage
requirements even further. It is assumed that at least two standa-
lone software development facilities will be acquired and maintained
throughout the effort to duplicate JAMPS software in Ada. Much of
the testing of Ada programs will take place on the host computer
under the control of a symbolic debugger. Highly optimized Ada
object code is generally undecipherable and cannot easily be patched
in machine language format in the target computer. Therefore, the
host computer (software development facility) should include several
consoles to support parallel efforts by various programmers. Even

*The Director of the Ada Joint Prcgram Office made this statement at
the AdaTEC meeting in Dallas on 19 October 1983.

38

though only one programmer will be able to use the Telesoft Ada
compiler at any one time, other programmers can do other chores,
such as text editing, on the host computer (in parallel) while a
compilation is underway.

3.6 SOFTWARE ARCHITECTURE

To take full advantage of the features inherently available
. with the Ada language, the software architecture for JAMPS must be
fully redesigned. There is little point in recoding on a module-
per-module basis with existing software written in "C"; this would
result in Ada code that would be both inefficient and difficult to
reuse in other systems.

On the basis of performance measurements, it has been
determined that the response time performance of JAMPS is largely
determined by the number of disk accesses required for various types
of messages. To reduce the number of disk accesses, the existing
disk~file structure needs to be changed extensively, combining
certain files together and eliminating data stored redundantly in
two or more files. The design of variant record formats should take
into consideration the needs of generic input/output routines
written in Ada. The record formats which currently exist in JAMPS
will be difficult to accommodate in Ada.

3.7 TESTING

It is proposed that redesign of disk file structures will be
accomplished in "C" prior to the reimplementation in Ada, and that
the disk file structures used by programs written in "C"” and in Ada
will be kept exactly the same. This will reduce the risks
associated with Ada by making it possible to partition the
integration and testing of Ada software into two separate efforts:

. o New (unproven) off-line programs written in Ada can be used
to both populate and validate the disk-resident files; J
afterwards, proven on-line programs written in "C" can be
used to verify that the disk files have been initialized
appropriately.

o Proven off-line programs written in "C" can be used to
populate and validate the disk-resident files; afterwards,
new (unproven) on-line programs written in Ada can be
exercised with high assurance that the data obtained from
disk during on-line operations is correct.

;1 A 39

' .:, Y \.-&" - \ '\. %_'.‘ N e \;,‘ \.'-.' LY v, »

N

A

SN I LS 2 aE A PN WL sMa T atp et o @ T T AL e e T,y TaTaT e A

.........

i3

s N
Sesals,.

This approach will permit integration testing in parallel for off-

line and on—-line programs written in Ada, and will reduce the over-
all time to accomplish the duplication effort. If this approach is
not adopted, the software development schedules should be extended

at least four months.

O

(R

Lol

R < g W
S

3.8 PERFORMANCE MEASUREMENTS

: Special software tools should be developed by the Air Force

i for performance measurements on Ada programs in the MC68000 because
’ such tools are not expected to be made available by software vendors
in the immediate future. As a prerequisite for developing these
tools, the government will need to acquire the source listings for
the Ada run time environment which has been selected.

B dl vy
kA NS

)

3.9 REDESIGN OF PROGRAMS WHICH GENERATE "SOURCE TAPES"

It is assumed that the government will undertake the redesign
of off-line programs which process the "JINTACCS tapes.” These
A revised prograns will obviate any need for YACC and LEX capabilities
23 as presently made available by UNIX to the IBLD programs in JAMPS.
’ It is further assumed that the feasibility of using YACC and LEX in
conjunction with Ada-compiled programs is extremely doubtful.
Therefore, it would be necessary to duplicate YACC and LEX functions
in Ada 1if the government is unwilling to assume responsibility for
the proposed changes.

[e
SRR -

If JAMPS were redesigned to bypass any need for support from
the Data Processing Center at Langley AFB, accepting the JINTACCS

g" tape as input instead of the "source tape,” then the functions

L currently provided by 2500 lines of "C" source code at the Langley
I&% Data Processing Center must somehow be accommodated in JAMPS. 1In

b 5% addition, the YACC and LEX functions (2,670 and 2,820 lines of "C"
— respectively) and the IBLD functions (in JAMPS) which would other—

wise have been absorbed by the Langley Data Processing Center (3,000

iﬁﬁ lines of "C") must be considered while scoping the size of the
f{ﬁ effort to duplicate JAMPS software in Ada.
R
e
AR
AN 3.10 CONFIGURATION MANAGEMENT
q‘ Telesoft does not currently provide tools for Ada software

) configuration control, nor does it intend to hegin development of
7ﬂz such tools during 1984. Nevertheless, it is highly desirable to

‘\ have such tools for keeping track of dependencies between different
-— versions of separately-compiled modules. Accordingly, the Air Force

40

-",fjﬂ_’*
ot AL

SR e x ge
AL

Y
e

|)5%

XXX
- \'\\

r.;.-..." \'\." ‘-.'.'.'Q'\-'\c \.'\- \' o LS ‘.I (4 \1\..'9 - o .

will need to davelop its own configuration management tools in
support of JAMPS goftware development in Ada.

41

N

Iy

n:‘iﬁ
. %

*'f?f;@ﬁ@} el

‘r-

RIRA

,.-J
et

—8 1

sé

»
yd

%
%
3 d
3
3
i,

. . [l i N AR AT S~ A

SECTION 4

ESTIMATES OF THE NUMBER OF ADA SOURCE STATEMENTS
TO BE DEVELOPED

Estimates of the number of Ada source statemeats to be
developed were determined in the following manner:

o The actual number of lines of "C" source code in the
existing JAMPS system was computed with comment statements
excluded.

o Adjustments were made to convert lines of "C" code into
equivalent complete source statements written in the "C”
language.

0 Adjustments were introduced to reflect the expected effects
of simplifying the functional requirements for JAMPS off-
line programs via "source tape” redesign. Allowances were
made for new local area network requirements not yet incor-
porated into the existing JAMPS software written in "C".

0 A representative example of "C" code from JAMPS was recoded
in Ada, yielding a planning factor for expressing/estimating
Ada source statements in terms of equivalent (existing) "C”
statements.

o Estimates for Ada source gstatements to be developed were
computed by multiplying a conversion factor (from the
recoding experiment) times the adjusted number of "C" source
statements.

The validity of estimates which are based on an extrapolation
from the results of a recoding experiment is highly questionable.
It 18 quite possible that if the recoding experiment had been
conducted by some other programmer and/or the representative example
selected from existing JAMPS software to be recoded in Ada had been
different, then the estimates for Ada source statements to be
developed might change substantially. However, the more traditional
approach for estimating the size of a software job, based on the
cumulative sum of intuitive judgments about the sizes of various
modules, is also prone to large errors. Regardless of which method
is followed, an error of 25Z while estimating “source statements” to
be developed is entirely possible.

42

SRNA SRS LIS S

B A P PR I TR E R R p TR RT] L' V U k AW-‘!'ﬁ_w,"ﬂ,"r?‘.'F.'-P.':'_v.v.‘?'."-'.'?.'-".'{

fs
o

e S

3y 4.1 SIZING ANALYSIS FOR EXISTING JAMPS SOFTWARE

The results of a survey of JAMPS code written in "C"” language
are depicted in table 4; comment statements are not included. The
data in table 4 corresponds with the "C" implementation on the DEC
11/23 and will be subject to minor changes while shifting over to

pabad o d

R A

B the MC68000.

s

"f ‘,‘c

el - 4.2 ADJUSTMENTS

q,.
o

e

2

The actual “source data” shown in table 4 has been adjusted in
- several ways, yielding the results depicted in table 5. The line

il

{; counts in table 4 for "C" code include certain lines which contain

Ly nothing more than a single bracket, “[". For purposes of cost

%: estimation, these lines should be treated just like "comment” lines,

o (i.e., ignored). On the basis of an examination of a representative

. example of the "C"” code, it is estimated that 14Z of all "C" source

Ly code 1lines shown in table 4 correspond to simple "brackets” and

&} should be discounted accordingly.

‘7% The data shown in table 4 is expressed in terms of "lines of

2 code.” It is observed that in numerous instances, a single JAMPS
source statement expressed in "C" occupies two or sometimes three

" lines. This 18 a matter of programming style. Some programmers

X prefer to write one source statement per line; others write indi-

3§ vidual source statements using several lines. For purposes of

,;g software cost estimation, it is more meaningful to use complete

ol source statements, not just "lines of code.”™ For this reasom, the
data in table 4 has been further adjusted to remove the efforts of

. multiple lines per source statement. On the basis of an inspection

RN of JAMPS code, it is estimated that 162 of the lines of "C" should

P2y be discounted as "spillovers” from preceding lines. In summary, the

7 "number of lines” of "C"” code has been reduced by 30Z (14X + 162%),

s while reexpressing the sizing data in terms of "source statements”

. (table S).

e It 1s estimated that 3000 lines of IBLD (off-1line) "C" code can

be eliminated by redesigning the "source tape” format. In essence,
- more of the burden of initializing JAMPS will be assumed by the
Langley AFB Data Processing Center in the future. In the event that
the government does not agree with this assumption, then the 3000
1ines of IBLD code (i.e., off-l1line JAMPS functions) plus an
k additional 5540 lines of "C" code in UNIX (YACC, LEX) must be
P considered as part of the effort to duplicate JAMPS software in Ada.
s If JAMPS bypasses the Langley AFB Data Processing Center altogether,
accepting the JINTACCS tape directly as input, then the functions

43

N A

»° '!";".:-' “d "“ '-"; KRS -n'.;l."“

‘%

AR 0y £ iy Wiy AR R4 RECNL 2 e D AR bl R RS A N L A LA L A YR A TAL AL G AL Gl AL il

Table 4

Sizing Analysis for Existing Software Written in "C”

Code Source Lines Memory Utilization*

JAMPS Off-Line Programs

IBLD Programs 7,736 Not available
Test Programs 2,327 Not available
(consistency/
completeness)
10,063

JAMPS On-Line Programs

Display 8,447 89,704
Communications 1,077 23,256
Remote Functious 3,694 121,536
(repeated as in-1line
code)
13,218 234,196

Bytes of on-line
executable code,
exclusive of
UNIX.

Total for JAMPS 23,281

Off-Line programs which 2,500
generate "source tapes”

#Memory utilization is based on "C" compiler for the DEC 11/23
computer.

.........

vy

s

N

- Al‘ ¥ .
ih iy

2t

w

g

Table 5

Sizing Data with Adjustments

"C" Source Lines "C" Source Statements
JAMPS On-Line Functions
Existing Functions 13,218
Allowance for Local 1,000

Area Network Functions

Equivalent lines to 14,218 9,953
be recoded in Ada

JAMPS Off-Line Functions

Existing Functions 10,063
Less simplifications - 3,000
due to new "source
tape” format
7,063 “"Best Case” 4,944

If Langley AFB Data Processing Center is unwilling
to revise the "source tape” format:

Existing Off-Line JAMPS 10,063

Functions
LEX 2,870
YACC 2,670
Total off~line code to 15,603 “In Between Case” 10,922

be duplicated in Ada

If JAMPS Bypasses Langley AFB Data Processing Center .f
Altogether:
Existing Off-Line 10,063
Functions
LEX 2,870
YACC 2,670
Programs which generate
"gource tapes” 2,500
Total off-line code to 18,103 "Worst Case” 12,672

be duplicated in Ada
45

Tt e ‘."g + '-,f{ ‘;“1 ,,‘u“.",‘.‘; 8.3 7.1”4‘0“‘:4“11, s

3

7.
s

PP

oL

Al

-

R

o

il B % o

> 3

T AR

-
P)

(RN
o oA

]
s

.
T
O
ts
-
-
ﬂ.l
e
.

currently performed by 2500 lines of "C" code at Langley AFB must be
accommodated in JAMPS.

4.3 A REPRESENTATIVE EXAMPLE OF "C" RECODED IN "ADA"

A representative example of JAMPS software written in “C” has
been recoded in Ada. The complete example in both languages is
provided in Appendix A, and the results are summarized in table 6.
Owing to the incompleteness of the Telesoft Ada compiler for the
MC68000, many features of the language had to be avoided during

compilation. Hence, the example had to be recoded using two
different methods:

© Recoding without any restrictions (i.e., using features of
the full Ada language). This method produced a conversion
factor which can be used for determining the number of Ada-
source statements to be developed on the basis of equivalent
source statements written in "C".

o Recoding in Ada, circumventing deficiencies in the compiler
whenever necessary. (Approximately one-third of the code
written using the full Ada language produced error
dilagnostics during compilation; therefore, the code that
will not compile appears as comments in the listing shown in
Appendix A.) This second method produced code which could
be compiled error-free, and the results can be used for
estimating memory requirements for programs written in Ada.

The results of the experiment suggest that Ada as a language is
more verbose than "C" because 1.46 source statements in Ada were
found to be functionally equivalent to 1.0 source statements in "C".
This conclusfon is somewhat misleading because the number of
executable source statements written in "C" and Ada were roughly
comparable (134 versus 125, respectively). The greatest difference
between the number of source statements using the two languages is
attributable to the explicit data declaration statements which Ada,
unlike "C", requires for defining the disk-resident data records.

In "C", data record formats are implicitly defined in the
executable code rather than in explicit data declaration statements.
During the recoding experiment, trying to fathom implicit record
formats proved to be fairly difficult, leading to the conclusion
that Ada software would be easier to maintain than "C" software.

46

v 5

o d

Table 6

o Conversion from "C" to Ada

Source Statements

“Cc" Ada
) JAMPS 167 244
Recoding
BN Experiment
153
w-?;t Sieve of 23 34
AR Eratosthenes
S
M Conclusion: 1 Source Statement of "C” source code = 1.46 source
2 statements in Ada.
et 244
ﬁé 167 = 1-46
vy
B Each source statement in Ada generates, on average, 24.8 bytes of
object code (see appendix A).
k%

4.4 ESTIMATES OF THE NUMBER OF ADA SOURCE STATEMENTS TO BE
DEVELOPED

3 is computed in table 7. Depending on what assumptions are made
about the "source tape” format, the estimated number of Ada source
e statements ranges from 23,939 to 35,222.

§§' . The estimated number of Ada source statements to be developed
4

O S s, S G T O A (3 R Y :

...............

N o S 2 W, T e s : 3 8 CAEARRYS . ARALIIN AN v e AN Saw . [l fe R DAL R A BTN S e M R A N T N
X,
i
4%
o Table 7
3
ks Estimates OF Source Statements of JAMPS Source Code
to be Developed in Ada
&3
“c” Ada
Of f-Line Functions
Best Case 4,944 7,218
In-Between Case 10,922 15,946
Worst Case 12,672 18,501
On-Line Functions 9,953 14,531
Configuration Management Tools 1,000 1,460
. Performance Measurement Tools 500 730
L
o
i:’? Totals
h Best Case 16,397 23,939
i In-Between Case 22,375 32,667
N Worst Case 24,125 35,222
43
,‘.,:
Conversion Factor: 1 source statement of "C” = 1.46 source
- statements of Ada.

{ 48

P A P N PR T L T SO R SR P IO A W, v
i ‘ [ATAT A LS UM Lt U '-"".‘ S

o,

BRT-RE LS h DA Bl B Al Sl W RN - hrtolle” S A it M S A SR A N AL VL gt EgL g LS A Ak A Ay '1'_“3‘_'-‘1

.

o

i

a3

Y

X

423 SECTION 5

e ADA IMPLEMENTATION PLAN

08 A tentative plan for duplicating JAMPS software in Ada is

é:{ presented below. Basic assumptions have been made as follows: (1)
a contractor will undertake the bulk of the effort involved; and (2)

. 300-series procurement regulations and practices will be followed.

RS 1f, instead, the standard ESD acquisition practices were adopted,

. based on 800-series regulations, it is expected that the cost of
duplicating JAMPS software in Ada would rise substantially, perhaps

Yoy even double.

N

R

Mg 5.1 MANPOWER REQUIREMENTS

WA Estimated manpower requirements for various tasks are shown in

%34 table 8. This table reflects recent experience[l10,11] in applying

g % the Ada language; the amount of effort expended during preliminary

Q;' design is above average and the amount of effort consumed during

f%} integration and testing is below average when Ada is compared with
other higher order languages (see figure 4). Inasmuch as JAMPS has

o already been written in "C”, the contractor is not expected to

Eﬁ. undertake the usual level of effort for requirements analysis; such

D) things as operator-interface studies will already have been

Zf, completed by MITRE and need not be repeated. Figure 4 illustrates i

W the differences between manpower allocations for a “"typical”

acquisition program and those assumed for the JAMPS implementation
P in Ada.

%
2§
:;i Very little is available in the way of data and models to
{§ support software conversion estimation[l2]. Typical productivity
533 during new development using higher order languages is 300 delivered
e source statements per man—month. If JAMPS software is completely
e redesigned and fully rewritten in Ada, then this would be tantamount
;:? to a new development effort —— not a software conversion job. Owing
% to the complexity of the language and the lack of programmers
Htﬁ) experienced in Ada, it will be assumed for purposes of this study,
ﬁ:j that programmer productivity in Ada will be 250 delivered source
e statements per man month.
f’ +

gt Ve M o L et ettt S0 Rt il B B Rl b il Nt DA ptn il A i Sa bl Rl R TR A Pal S LA A A LAATE il AL R LINAE D B A

1 -

4":&..‘.“"‘

2 Table 8

SH Ada Implementation Plan
3

&

)

s

Task Description

Level*
of
Effort
(man

Responsibility months)

1 Update JAMPS System Performance
‘ Requirements '
A 2 Update JAMPS User”s Guide
‘ 3 Prepare IFPP
- 4 Prepare RFP/SOW
N 5 Reevaluate Feasibility of Duplicating
. JAMPS Software in Ada (to be accom—
) plished 7/1/84)
[6 Source Selection Support
. 7 Contract Monitoring Support
;j 8 Redesign the Disk File Structures
N 9 Redesign Existing Programs in "C" to
Use New File Structures ,
e 10 Redesign the Format of "Source Tape”
o 11 Redesign Off-line Programs Which Generate
ﬁ“ "Source Tapes” (50% Redesign)
12 Acquire, Install, Demonstrate, and
bt Maintain Ada Software Development
Facility
® 13 Conduct Benchmark Measurements to Deter-
, mine Efficiency of Ada Compiled Code
14 Requirements Analysis
15 Preliminary Design
/ 16 Detailed Design On-line
17 Code and Debug Programs
e 18 Development Testing for JAMPS
B 19 Validation Testing and
Demonstration
- *Based on "optimistic assumptions”
o
N
f?

50

iy !

Ca¥ -
4

as o
Py

Dy

}

e ea e, 8 A e Bl L C B e ¥ M. e e NG e e e a e W g ot
AT ST L AN ’

R 7. S T 2

Government

Government
Government
Government
Government

Government
Government
Government
Government

Government
Government

Contractor

Contractor

Contractor
Contractor
Contractor
Contractor
Contractor
Contractor

1

-~ 0N

21
12
36

12

26
18
15
14
12

RN A 'p.."' AL SRR RO e, -'.'.\'.'.. et *‘ o -_'.\" '.._'.\! Ny < W ,-3‘ '\-:\‘;.‘-'\"\-' - ;.‘, et .."
. . " “ o » LA _ W v LW N [V ;

N
e’
o

L
«fale

% Vo
AR A

.',.q. -l

5%
raa

Table 8 (concluded)

¥ ,
-

W’,.' ~ »..ﬁj.gf
o
ot

. Level
3% of
Effort
<o) (man
iﬁgiﬁ Task Description Responsibility months)
3214 20 Requirements Analysis Contractor 4
N2y 21 Preliminary Design Contractor 13
_ 22 Detailed Design Contractor 9
gﬁ“' 28 Code and Debug Off-1ine Contractor 7
fﬁ; 24 Development Testing Programs Contractor 7
Egﬁi 25 Validation Testing and] for JAMPS Contractor 6
§;¥» Demonstration
o 26 Prepare Formal Validation Government 6
_ Test Procedures
j7§$ 27 Conduct Validation Tests Government 4
1:,11 28 Conduct (2) Timing/Sizing Analyses Contractor *ek
S) 29 Document Potential Pitfalls to be Contractor Rk
B T d Avoided While Attempting to Reuse
T JAMPS Software
30 Document Ada Software Methodology Contractor bkl
AL Adopted ‘
@42@ 31 Design, Code, Test Document Contractor 10
?§&j Configuration Management Tools
N 32 Design, Code, Test, Document Contractor 4
1R Performance Measurement Tools
33 Training in Use of Ada Contractor *
Pt 34 Training in Use of Ada Government 0
N 3 35 Document Lessons Learned While Government 3
Tz' Maintaining an Acquisition Program
g Using Ada
Yom 36 Support to OED Demonstration Government 3
‘ 37 Management Contractor 21
ey 38 Software Quality Assurance Contractor bkl
f :ﬁ 39 C5 Software Documentation Contractor bl
BRI
g
z:;_ **Included indirectly in man-month estimates for software development

(tasks 14-25).

&
s
R
o 51
Pa
R
'):7‘1‘4'”‘-‘:. '
o~
. avem
RSN
».i"i:f

.4‘14‘! . . - . . e m v, e,
ey \ .
. A

- I IR I L ST an A PP _-“‘. o~
ARG T RN SRR 1 A S R Mt AR L S XS R YA

[Z1] -epv Sursp aaem3ijos SAWVL Sur3ledrrdng 103
pounssy 3Injdnials umopyeaag JIoM 24yl Yirm (epy ueyl IsyiQ JOH B U0 paseq)
weaSoig uorlITsTnboy pazys wnypay TeITdAL ® 10J umopieaag NioMm 9yl saiedwo) 4 2an313

(vav) Aanis Ssdwvr

ONILSIL
one3aa 1N3WdO13A3a
aNVv 3309

s.onaa
~ _ GNV ONILS3L
»EL NOILVAITVA

%8

NDIS3a %02
a3lviaa

SISATVNY
$1.034

NDIS3a
AHVYNINIT3IYd

\\\ ..\-dsl\ ‘.Q

)-.n-}v}u* -\h‘\\.4

par

WYHOOHd NOILISINDIV TVYIIdAL

ONILS3L
ANINDOTIA3Q

S.0N3d
aNV ONILS3L
onaaa NOILVGITVA
aNv 300D %S"EL
%0°0Z
LT SigATYNY
SLO3Y

NDIS3a
aalviaa NDIS30
AYVYNINITIY

JﬂlJI\l-d r3

,.,,lxr!

N

u‘.ﬁptravj

...\hr ntmhr ..‘.

\
Y

AN

O R A N . S NN L SR AR

TR RIRNT e T AR @ N V., [g L g G SN A L e e T s

From section 4, it 18 estimated that a total of 23,939 Ada
source statements need to be developed by the contractor:

On-Line Programs (redesign) 14,531
Off-Line Programs (best case) 7,218
Tools (new design) 2,190

23,939

23,939 source statements
250 source statements per man~month

= 120 mm for software
development during
the preliminary
design through in-
tegration testing
phases.

From figure 4, preliminary design through integration testing
constitutes 792 of the total software development effort; activities
such as requirements analysis and formal demonstrations represent
the remainder of the effort. Thus,

120 om
.79

= 151 mm will be required for the total software effort
by the contractor.

The individual efforts by the contractor for development of on-line,
off-line, and tool software are computed to be 92 mm, 45 mm, and 14
mm, respectively.

The 151 mm estimate for software development efforts by the
contractor includes, among other things, tasks such as software
documentation, timing/sizing studies, and software quality
assurance. It does not, however, include the maintenance of
gsoftware development facilities, contract administration, etc., and
when these other factors (see table 8) are taken into account, the
total manpower requirements for the contractor for all activities
amount to 188 mm. Additional efforts to be performed by the
government personnel are estimated to require 121 mm.

53

O ST s ; - i.t.i e 38 XS, TG SRS f_ WA LY

LI SN)

KRN |

fme o et R AL VA R o B ANAETR IR UAE ADAE) LMY ANRALIACIML S A lA ol Sl A L N g P ik s I 3 »

T
Ty

5.2 SCHEDULING REQUIREMENTS

W
,‘ﬁ A Gannt chart for duplicating JAMPS software in Ada is

AR presented in figure 5. The tasks in the Gannt chart are defined in
"y table 8. This chart indicates that the contractor”s efforts will be
5*? completed in 21 months:

;gﬁ Requirements Analysis months 0-4

W2

g Software design, development, months 4-19%

and integration testing

k]
5\1 Acceptance testing, by the months 19-21
'y government
5
th Operational effectiveness months 21-23
. demonstration
ot It 18 assumed that off-line and on-line programs will be developed
§\” and tested independently of one another (see section 4.8).
;
¥,
b
75
B
!
7 ': i
158
13
L,.
4
2
¥
‘,.'

¥The results of the Cocomo model projections suggest that software
design, development, and integration testing will only require 12.9
months (see section 6.2).

Q".{* R
Aardirdl SR

e

.",
Gk

.tli(

54

2 LA
S, Vo p

..
§

|u

LR L SF N S T I AT I S i T, P R e L I e
AT L At o T4 Ve P o LA CATRRNC TANAT - Lo Ty X e T e

T MO RPN~ R o, w, LY O.F G ol W §
3 l“) : 3¢ >,
LA S IR WS N M S N R W o N 3 e

I o4 1Y

L—v -8
HL—=7 - 21
LH——Y ﬁ-
H— - 64

H—7 - vt

H————7 -2
v - L
LH—7 - o1
H—7 e
OH—7 |

55

GANNT Chart for Duplicating JAMPS Software in Ada.

L LB L] L] v L] T L L] L] T v v AJ Al LA v v v LS v
€ ® % 9z z 0 81 9N v L 0L 8 9 [4 z 0 T r & * 0 NeVL
QUVAY LOVHINOD 40 30VQ YALIV SHANON

Figure 5.

A TV 77V, TN PO N AT - ENEAETE L ThMRt . ~ g~ I
Bt S P X ,-L&MD,». \.JWWWJ\.%V LT f&ﬂﬂ#h-u%h ..L.\. {7 NWw-th'.&v,r : T

s e e g Rl Gl Pat R AW B k- Cs Ak il AR it d A A A L S A L b N\ LA DRGNS Al ol L AT P d e

.
2 28 30
N s

Ny
20 22 2
. i

el et
NS
1 1
'l e 't
OH—=7
Fa v/
PAS V4
OH—7
v
—7

"
i

MONTHS AFTER DATE OF CONTRACT AWARD
I

.
k,; ® -
%
!
LA AR SR S GE R S S e s e e e pe—
- !888888838885#83%8388
-

Figure 5. GANNT Chart for Duplicating JAMPS

‘T, Software in Ada (concluded)
o 56

e e T AT T a® e " e’
'_,.,,‘n‘ P My \s >

SECTION 6

COST ESTIMATION

The cost estimates for the contractor’s effort to duplicate
JAMPS software in Ada have been determined by two independent
methods:

Method 1 - Software cost estimates have been computed by
multiplying manpower estimates (see table 8) times
assumed labor rates (which include general and
administrative costs).

Method 2 - Prediction of software development costs via the
Cocomo model. The second set of results will be
used for purposes of comparison (i.e., for assessing
the reasonablenesc of the estimates generated by
Method 1).

6.1 METHOD 1: MANPOWER REQUIREMENTS MULTIPLIED BY ASSUMED LABOR
RATES <

According to Reference 13, microcomputer programmers were paid
annual salaries during 1983 as follows:

Experience (Years) Salary ($K)
;,;g 0-2 24.0
'.’3 2—4 27.7
Y ’ 4+ 34.5

For purposes of this study, an annual salary of $30K will be
. assumed. To this figure, 1282 needs to be added for overhead and
202 for general and administration expenses. Hence, the cost per

man-month is computed to be $6,200.00

Optimistic and pessimistic estimates for duplicating JAMPS
softvare in Ada are depicted in tables 9 and 10, respectively.
Taking the average of the optiaistic and pessimistic estimates, the
total cost to duplicate JAMPS goftware in Ada is projected to be
$4,486K.

i 57

- ‘, “'\.Q\. ';1 »‘! "' % y

S N Ve e e b Gk R 2

ol Table 9
78
%2 Optimistic Cost Estimate

Estimate with
_éf 20Z Adjustment
;yﬁ Initial Because of Soft-
»e Estimate ware Reusability
i_\ via Requirements and
= Man-Months x $/MM Method 1 6X Incentive Fee
e Contractor 188 x 6,200 = $936K $1,179K
) Government 85*% x 9,166 = $ 779K
e Software Development $ 50K
g Facility (Labtek[14]))
A Training by Consulting 0
. Firm
f; Consulting Services $ 100K
;;; Source Listing for Ada $ 13K
I Run Time Environment
& Management Reserve (25X)** $ 5S30K

$2,651K
i $2,651K
» St Bl ™ .
;$ Cost per source statement 23,930 statements $110.74/source

2% statement

Programmer Productivity = 250 source statements/mm.

#Tagsk 9, Redesign of Existing Programs in “C" to use new file
structures, has been omitted from the "Optimistic Cost Estimate”.

#%A management reserve of 252 is consistent with ESD practice for
software redesign.

soa .
e g

58

-l DI

W PR E SARR AN R S Y R e S S LR G S G R R
\ TN, ¥) MLPC L N, ¥ 2) B TN "\\'\ N

W xR O S T L LR & AN AN ikl LA™ QR N R i B A A T At e € et F'."-tl;w

R

?,h

3%

B 2 e

-~

S

Table 10

Pessimistic Cost Estimate

5
B
.
=
3
t

Estimate with
50Z Adjustment
for Software Re-

Initial usability and 6%
Estimate Adjustment for
via Contractor Award

Man-Months x $/MM Method 1 Fee

Contractor 381%* x 6,200 = $2,362K x 1.56 = $3,685K
Government 121 x 9,166 $1,109k
Software Development $§ 50K
Facility

Training by Consulting $ S0K
» Firm
> Consulting Services $ 150K
kY Source Listing for Ada $ 13K
, Run Time Enviromment
‘ Management Reserve (25%) $1,264K

$6,321K

A $6,321K

”4 Cost Per Source Statement = m = $179.46

Programmer Productivity = 129.4 Source Statements/mm (Per Cocomo
Model)

?j 35,222 Source Statements _
B 129.4 s.5/mm 272 mm for preliminary design through

integration and testing

] 2;% = 344 mm total S/W development effort

+37 mm for contract administration etc.
, 381 total for contractor

R e
‘ol

4 e
e

aw nw W

- 7

ABSAIAT Y

e

Ty <

el

P

[S

+ P
_

‘;’:‘0" 1'"”"“"4
< WP Y

54
%
3
bl

YN PN AN

4

6.2 METHOD 2: COST ESTIMATION VIA THE COCOMO MODEL

The Cocomo model[15] has been applied as a means of verifying
the validity of cost and schedule estimates shown previously herein.
Inputs to the Cocomo model are summarized in table 11 and the
regults predicted by the Cocomo model are depicted in table 12.

The Cocomo model computes estimates for cost, manpower, and
schedule requirements for the following phases of software
development by the contractor (only):

o Preliminary design
0 Detailed design

o Code and unit test

o Integration and test

It does not include estimates for activities such as requirements
analysis, formal demonstrations, and project administration.

The Cocomo Model predicts that JAMPS software development in
Ada can be accomplished in 12.9 to 16.4 months; figure 5 indicates
that this same work effort (Tasks 15-19, 21-25, 31-32) will be
accomplished in 15 months.

The Cocomo Model predicts that software development will
require 170 to 272 man months, depending on which set of assumptions
is made. These predictions correspond with 151 mm (optimistic) and
344 wm (pessimistic) estimates computed via Method 1, and can be
compared with the 180 actual man-months expended during the JAMPS
implementation in "C".

The level of staffing predicted by the Cocomo Model (especially
for the case involving pessimistic assumptions) indicates that a
fairly large mainframe computer capable of supporting as many as
15 consoles will be needed for Ada software development.

The costs per delivered source statement, as computed by Method
1 and 2, are not directly comparable because the Cocomo Model
does not consider such things as management reserve, contract
monitoring expenses, etc. The cost estimates per source statement
computed by Method 1, $110.74 and $179.46 for the optimistic and
pessimistic cases, are less than the ESD average ($200.00/source
statement); this is to be expected because 300 series
procurement regulations are assumed.

60

N IY'Y '< Ry My T
AN AT L0 e Uy

N Gt et e N LT e e e et ot e e e)T e
Sl .N'- "y) R

Table 11

Inputs to Cocomo Model[15]

"‘J"“’ b

Development mode: organic, semidetached, embedded
. Delivered source lines of code: 23,939 and 35,222 for optimistic
L& and pessimistic cases, respectively
- Preliminary design costs: $6200/mm
x - Detailed design costs: $6200/mm
Code and unit test costs: $6200/mm
Integration and test costs: $6200/mm

{ Very Extra
Cost Driver Low Low Nominal High High High
RELY required software 0.75 0.88 1.00 1.15 1.40

_ reliability

r DATA database size 0.94 1.00 1.08 1.16

4 CPLX product complexity 0.70 0.85 1.00 1.15 1.30 1.65

'§, TIME execution time 1.00 1.11 1.30 1.66

! constraint

STOR main storage constraint 1.00 1.06 1.21 1.56
VIRT virtual machine 0.87 1.00 1.15 1.30

1?5 volatility

ﬁ% TURN computer turnaround time 0.87 1.00 1.07 1.15

2 ACAP analyst capability 1.46 1.19 1.00 0.86 0.71

¥y AEXP applications 1.29 1.13 1.00 0.91 0.82

. experience
PCAP programmer capability 1.42 1.17 1.00 0.8 0.70 |

. VEXP virtual machine 1.21 1.10 1.00 0.90

?é experience

% LEXP programming language 1.14 1.07 1.00 0.95

‘ﬁ experience

® MODP use of modern 1.24 1.10 1.00 0.91 0.82

programming practices
g - TOOL use of software tools 1.24 1.10 1.00 0.91 0.83
o SCED required development 1.23 1.08 1.00 1.06 1.10 I
schedule

NOTE: Underlines are used to indicate the inputs selected.
Numerical values are cost driver multiplication factors used in the

61

A AL AL TR U A S S Rt o RO < » e
; e e . * e, A by y ‘ o ", Jl\.....g. 'n|’|‘."‘ ALY ‘v N

REA pelonfionty

N~

i

1l il

335

Y
s

g

WIS

&
AN -

i“m l:'i g ?*""'

>
o

ST oot Ay g
R Wt

t.s.f bt o.

PRI, &
oue g

52

P&

Y

st

3

N
2
LT

PR CIWC IS ALAALAL AL SN LA S AS S YYD AR R AR SEWLELINLE R OE ORI L NN e
Table 12
Results from Cocomo Model
Optimistic Case
Schedule

Phase Man-Months Cost (K$) Months Staff
Preliminary Design 20.1 124.8 3.0 6.8
Detailed Design (DD) 33.5 207.4 5.2 16.7
Code & Unit Test 52.8 322.2 included in DD
Integration & Test 64.1 397.2 4.8 13.4

170.4 1,056.6 12.9
Productivity: 140.5 source statements/mm

Unit Cost: $44.14/Delivered Source Statements

Pessimigstic Case
Preliminary Design 32.0 198.4 3.5 9.1
Detailed Design (DD) 52.4 325.1 5.8 23.2
Code & Unit Test 81.7 506.6 included in DD
Integration & Test 106.0 657.3 5.7 18.5
Total 272.2 1,687.3 15.0

Productivity: 129.4 source statements/mm
Unit Cost: 47.91/source statement

62

The most likely cost to duplicate JAMPS software in Ada, given
the constraints provided herein, is the average of the optimistic
and pessimistic projections computed via Method 1 (i.e., $4.5M).

&

gy
TALARAR

i

A, :w iy
]
't x

e d

.

a)
>

i

i
e

Bt)
T

AN
°§
‘

63

o
e

B .. N R ‘.‘,.__‘.T

3

.y - ")

-.-'..'f .'- o' "‘,.‘- .‘.n\- \-'.-- ‘.-\- .__' sﬂn‘* N N \‘.,5'

0¥

At O O A T, L L S L |

N ‘
f?s SECTION 7 i
?1.‘;' |
j:ﬂ ADVANTAGES AND DISADVANTAGES OF REIMPLEMENTING
b JAMPS SOFTWARE IN ADA
[,
1%
W] 7.1 ADVANTAGES
Y
"éf The principal benefits of undertaking an effort to recode JAMPS
' software in Ada are the following:
- .
5:2 o The use of Ada will promote JAMPS software reusability by
N lessening the cost to incorporate JAMPS programs in other
A systems.
~.“'-:
” o The use of Ada is expected to decrease JAMPS life cycle
;{; costs because of improvements in software maintainability.
58]
’{? o ESD will benefit from the experience of an acquisition
b program involving the use of Ada.
. 7.2 DISADVANTAGES
%‘% The principal disadvantages in recoding in Ada are as follows:
3 ¥ o The Air Force has already invested 20 man-years in the JAMPS
" software written in "C" and most of this investment will be
discarded if the software is rewritten in Ada.
o Alr Force program offices which desire to use JAMPS software
written in Ada will be held up three years while waiting for
the Ada programming tools to mature and recoding of JAMPS
software in Ada to take place.
e rd Jd
5 g
21 o There are risks associated with using Ada at this time |
oL (e.g., programmer productivity with Ada is unknown, ESD has
b3, no experience with Ada in C3I applications). .
b
- 0 In the short run, code written in Ada is liable to be less
.t reliable than the proven "C" software in JAMPS.
Ny
2
Ry 1,
¥
oo 64

i

$

»

L

fn)

2 LIST OF REFERENCES

S

1. W. Kealy and K. Pigott, "Data Table Source File Description -

» Data Table Maintenance Manual," ESD-TR-82-125, Electronic

g Systems Division, AFSC, Hanscom AFB, MA (February 1982)

b Al18476.

i; 2. Telesoft-Ada sales literature, Telesoft, San Diego, California.
‘ﬁ - 3. G. Moulton, "The ISCS-Ada Compiler," Irvine Computer Sciences
:2 Corporation.

;S 4. R. DelLauer, "DoD Directive 5000.31, Computer Programming

A Language Policy," 10 June 1983 (draft).

;* 5. J. Buxton, Department of Defense Requirements for Ada

o8 Programming Support Environments "STONEMAN" DoD, February 1982.
L]

'§] 6. U.S. DoD, Reference Manual for the Ada Programming Language,
e MIL-STD-1815A, 17 February 1983.

e 7. J. Gilbreath and G. Gilbreath, "Eratosthenes Revisited, Once
éﬁ More Through the Sieve," Byte Magazine, January 1963,

q PP. 285-326.
n

b 8. Telesoft-Singer Librascope News Release, "Singer Uses

) Telesoft-Ada for Army, NATO, C3 Update, and It Works,"

) 13 September 1983.

3‘ 9. J. C. D. Nissen et al., "Ada-Europe Guidelines for the
el Portability of Ada Programs," National Physics Laboratory, NPL
At Report DNACS 52/81, November 1981.

7 10. H. Conn et al., "Ada Capability Study, Final Report," General
- Dynamics Report, DAAK80-81-C-0108, 30 June 1982.
Lo
£ 11. H. Conn et al., "Ada Design Case Study, Ada Integrated
d Methodology," General Dynamics Report, Contract No. DAAK80-
- 81-C-0108, 28 June 1982.
< 12. R. Wolverton, "The Cost of Developing Large Scale Software,"
R COMPSAC 77 Tutorial Session.

-~

;’ 13. Source EDP, 1983 Computer Salary Survey and Career Planning
T Guide.

2

“ 65

o
”
3

e '.~.' LN E S P yE Ry s"s' LSS LNE WK Iy w.'s' ‘-_s‘ -. AR LN Ik _.7. NI LR AN \._',__. T \',-.'_ -.

Ly A Ry el E T SV P e ¥ et St e Bt g Ayt e »v bac Vg2 - 2Ag phl pad ¢ R - v R i

= LIST OF REFERENCES (Concluded)
AR}

14. LabTek Corporation WICAT hardware and Telesoft software price
lists.

;;«~ 15. B. Boehm, Software Engineering Economics, Prentice Hall 1981,
2NN Englewood Cliffs, New Jersey.

- APPENDIX A
&
yi A REPRESENTATIVE EXAMPLE OF JAMPS CODE REWRITTEN IN ADA
X
ﬁ.’.'.i
& MITRE personnel at the Langley site selected a representative
;; example of existing JAMPS code to be rewritten in Ada. This example
}_j was extracted from one of the off-~line functions and is depicted in
LY Attachment 1. Its purpose is to convert a file consisting of ASCII
o characters and numbers into a file consisting of ASCII characters,
binary data, and an index. The following material is borrowed from
i% - D. J. Criscione.
§ During the conversion, some fundamental choices were made which
o affect the number of lines of Ada source code produced. Little
;f» regard was given to producing code which takes fullest advantage of
the features offered by Ada. Instead, the resultant Ada code
T closely resembles the "C" code that was used as a model. Aside from
'“3 necessary syntactic changes, only a few small sections were
[~ redesigned to accommodate language comstructs which differ between
! f: "C" and Ada. As a result, the lines of executable code remain
o~ roughly the same. However, the total number of lines of Ada code is
much larger than that of "C", because the Ada compiler requires
o explicit data declarations for describing the information contained
ﬁq in records (read in from disk) whereas the "C” compiler does not.
o The "C" listing sometimes contains several local variable
AN declarations in a single line where Ada encourages the definition of
N a single data declaration per line, and this tends to distort the
results shown below:
‘)n“;
g : Category Lines of "C" Lines of Ada
a 4l
Ry
1% Program Overhead 5 14
3 Constants used by the compiler 49 49
N Specification of data types and 23 35
N data structures
N Interface to UNIX files (code 3 22
‘M and specification)
M Local variable declarations 7 35
N Executable code 134 125
TOTAL 231 280
~
1
3 Brackets -31
;ﬂ Continuation Statements -33 -36
éb Complete Source Statements 167 244
Y
2 .
'
-~
LY
L 35 TR FARL SR Y A A S R e S S A S T T S e R R B G AT AL TN T T T
ASAT i ATl ale T ¥ YA NN AT T U9 Eo T (o St AT Tt (N W T AT A T TN N a4y \: :"\"x" PSS A

NN

L NIE W RTAL KNI PRI LY PN A AN SN 2 ¥ X g0 v oW U ST . et bl Gitt, - AR N A D RN

3

s

)

}

3

ﬁﬁ&; Due to the significant number of missing features in the

g”i Telesoft compiler used in this experiment, it was not possible to
33 complle (without error diagnostics) the 280 lines of Ada source code
G referred to above. As a consequence, in numerous places, Ada code

appears as comments in the listing wherever it failed to compile
properly (see Attachment 2). Circumventing the compiler deficien-
cies, only 224 complete Ada source statements were actually
compiled, resulting in 5,566 bytes of object code or 24.8 bytes per
source statement.

BTN

é
yys

A

Attachment 1: Source code listing for “C" code.
Attachment 2: Source code listing for Ada code.

o
ary
s
e
4

v
s .

v 4

i V.1

W

68

4" e et .

NIRN, 3

R e R S R L AL R Te TR N LN LN

NN L N LT N P
SN SRR SRR AR TS ERENS LS SO S \'s VARG SN
o - . b [} b

) ' LS Y 'a.. Ny '."'.'\"t-.,'-'."'- LY . LY
BERCATIAR AR %t o ~S e 514 41 ARA

- .
!\’ LN

- Lo
n P

\:.'.'('.’)
"W {

LA e A A e e

Attachment 1

X Representative Example Coded in "C"

or il Ll

O

i
5
"y

0

ASY

69

e
L et 3‘

3y +++ defines ++4 Data Base Defines - 07,/07/83 »/
3 } = -~efine MAXMSGS 150 /% max messagQes in dir s/
N = efine MAXKDSS 600 7% Max keyword in dir %/
= zefine MAXDF 1S 1500 /% max dfis in dir =/
® cefine KDF1S S0 s% max dfi's in a kds table %~/

'} = zefine MSTATES 100 /% max states per line (msg tavles) x»/
3’*, - cefine KSTATES 199 /% max states per line (kds tables) »/
k2 = .efine DSTATES 100 /% max states per line (dfi tables) =~/
AN = efine MSTRMA: 62 /% max length of str for man flds »~/
ﬁgq = refine MMANFL DS 3 /7% Mmax mandatory fields in 3 msg %x/S
% i efine SHRTLEN € /% max length 0of short msg name »/
~b = efine LONGLEN 23 /% max length of long msQ name %/

= sefine KDSLEN 9 /% max character length of kos’s x/
= tefine FDFHLEN zs s# max character length of fdfh’s =~ .
‘efine MAXVALL 3¢ /% max characters for validataion
MED template code area =~/
= .efine DCHATINE 30 /% max E types for a single chain =/
©oetine DTABLE 200 /% max entries i1n a table macro »/
‘efine DDUIS 100 /% max guis for a single o0fi »~
= -efine DTABSTR 40 7% max characters in a table entry *-/
= -efine KRSTARTE <0 /% Max number 0f states 1n a3 row »/

) = :efine MSGINDEX i
~ - .efine KDS INDEX 2
teb ‘efine NMSG 3
‘& 2 .efine KDS 4
' s efane DFI S
Tk = -efine FDFH 5
Uy T efane INIT . /% 1nitialize data tables mode x/
efine UPDATE z /% update exi1sting data tables »~

= .efine DBGON 1 7% €lag %/
3 .efine DBGOFF 0 /% flag =/

i = ~efine MFILENH i4 /% maximum characters in file name »~/
*{2 = :eéine TEMPFILE "idld.tmp’ /s temporary output file s/

g# 2¢+1ne STRFILE “:bla.ste’ /% temporary table string file x»x/

. : .efine CHN 1
e, s zefine COMNOTRB 2
] : retine COMTAB 3
’ = sefine DIFNOTRP 4

- tefaine DIFTAB <

g = efine AL TCHN 6
ok = .etine DIF 7
,3? : sefine C :
by = zefine E H
) = zefaine FIx 1

B z .efine VAR H
! : Lefaine UNKNO-IN] /% unknown use¢d when error detectea =/
s zefane NA -1

70

T e I L T . T T A S AL AT T A AT A AT
0 g) KRy ™ o L e ; .*1.~\. ': \-‘:J‘\-‘.
P Py RN A

% FRR g 8y’

TAEAD ENLAPR I/

T S T K W R R s R L L%, X ¥ A 7 T o T Y S Y I T R S U T R T AUV P AT R T T T EAN LN R R TR U T A VL

2
f
-y i
. |
i !
o2 |
85
it
.
&% <truct code
[<
. int cafitype; /7% 1:2C or 2:3:E for dfi type =/
int cdéis /7% integer dfi number »/
W int cauis /% integer dui number */
e int crange: /7« 1:integer range, 2:floating point range =/
-~ s% 3zoctal range., -1:n0 range &/
& float cfhigh; 7% value of upper dboundary (float) =/
" N float cflow: /% value of lower boundary (float) =~
. long clhigh; /¢ value 0f upper boundary (long) =/
long cilow: /% value of lower boundary (long) %/
int cmin; /7% minimul code length of data item codes
1 int cmax; /% maximum code Ifength of dats item codes &/
; int clngths s« length in bytes of data item codes x/
BN int ccnt: /% number Of codes x/
E long lcunext: /» location of next dui =/
e i
oy
!
I
y
B,
il
A
A\l
A 4
=
Ay
%
,‘l”
-
‘ 71
'
4
PR X

AR A NN e N
RN RN NPT KN AD,

BT T N N Nt N S I R L R S
R ¢ ¥

»
2%, ‘b‘v 15 ("; W AR H, ‘..'g '. 3 ¢QQ£

AN 8,1

=

N
N
iy

s-rclude <stdio.h>
3:nclude <ctype.h>
= -nclude “defines*
T -¢clude “helpstruct”
“i-fine: NEWDFT 1 se Value returned from., and defined in lookahead =/
3--fine DUINAME 2 /% Vajue returned from, and defined in lookahead =~/
£ =1-fine LIT 3 /% Uaslue returned from, and defined in lookahead s/
o ~:-fine CODELINE 4 /7% Uslue returned from. and defined in lookahead =/
A “ - fine RANGE S /% Uslue returned from, and defined in lookahead =/
21 =: fing OCT 6 /7% Value returned from, and defined in lookahead =/ .
gy i« fine FLOATY v 7% Value returned from, and defined in lookshead =/
2.-fine ENDFILE e /7% VUalue returned from, and defined in lookahead »~/
2:-fine MAXLINE [(e} /% Maximunm s:12e buffer for line read L Z4
e sirfine INTEGER 1 s7% Integer range indicator s
a - fine FLYPT 2 /% Floating Foint range indicator s/
: arifine OCTRNGE 3 s% Octal range indicator ws
[
f; TI_E epin, spout., wpreadout, sfopenc);
¥

't uct code unde, coderead, %xpcode, xpcread;
.r S1inelMAXLINE], 321 inelMAXLINE)., sonecode{MAXLINE]:
g lcurpos. icurtmp. lcurloc. ltmpofé, 10fi., frtell():
linecnt, pus2, sSizemin, SiZemax:

o

- nUarge,s argy)

g e e e

i “t Irges
IRy “.r margull;
"
1int codelen, chk, s, loopi, loop2, posi;
int readchk = 03
o char ¢
i thar splinc. spdf:line. spduirline, #pcline, #ponecode;
e chor sdf:linelMAXLINE], sduilinelMAXLINE]:;
’ sea% GRAND OPENING s=xx/
1§ Carge ¢)
. €
! fprinrfigstderr, xxs ERROR +*x& 4n input and output file must ")
. fprinté(stders, be named \n');
B exitt1)}
o }
’ 1f ((pin : fopen(essargu,” r”)) z: NULL)
- <
fprintficstderr. xxs ERROR vx= unable to open Xs for read\n".=xargv); .
exit(lo;:
>
“y) 1f ((pout = fOpeniss+argu,“w")) =z NULL)

H < .
fprintfistderr . 'sxn ERROR ««x ynable to open Xs for writesn'.xargul:
exit())s

. >
W
-

72

ol e Do L gt 0 A e ata Y AN it - Rk ok Bt o A » X UhRay A e 5 R AN A T i T W Y e B e R \'{

3 14 ((preadout = fopen(sargv,"r”1) =z NULL)

i <

fprintrisiderr. "sxs ERROR »x*xx uynable to open Xs for read\n",*argu);
exitiils

M seew INITIALIZATYLION CODE %&%/

A pcode = tcudes
pcread = fcoderead:

‘% Set cursor locition to its initial position after the index =/
lcurloc . si1zeof(long) &« MAXDFIS:

. <4 Set tne positiin of pout (zutput file pointer) a/
5 fseek(pour.,lcurloc.Q);

‘» InitisliZe the (1ne count 2f number of lines read %~
1 tinecnt = 03

79%s BEGIN PROCESSING =xx/

” = -oef DEBDUG
fprantf(stdout."Processing has begun! n™);
< 3-~d1f

% Initizlize space for first read. w/
pline = sline’

% Get the first [.ne Of the ¢ le. This loop will process the DFl’'s =/
<« and the inner (50p will process the codes for each DFI., »-

while (readchk = igets(pline,M:XLINE,pin))
<
if¥ (readchk =z EOF)
‘ preot();

“# Call the 1nitial1zZing routine. *x/
initialoys

% Initiali2¢ the strings that sre being used. %/

pdfiline = sdé:line;
5 pdusiine = sduiline;
ponecode = sonecode’

' pcline =z gcline:

‘'« Fin® where the :nput frle pa'nter is positioned and increment the =/
- -8 line count. =/
jcurpos z ftellipinds
++linecnt;

RV I

. ‘¢ SiNCE we Nave . eady checred this line. We kNOW wWe are working with =~
‘4 a new DFI. We cen start ext:acting the 1nformetion that we went. =/
if t(splane == 'E")
pcode=->cdfitype = €3
else if (mpline z= "C*)
pcode->cdfrtype = C}
else
<

-

¢prantf(staerr. ‘«ax ERROR =u» DFI type must be C or E. "
fprantf(staerr, ‘line =g -n",linecnt);

73

&

‘ifﬂgﬁﬂu
e S

Y
'«

7
A

£

g
o Ml
P e L)

e

s

e

1
[

R e AR cMuA Ty T Ty Co Vo N e Tu

exit(i);
>
sw Convert the DFI number intc a«n integer by substring and an asci: to =/
/% integer conversion. x/
substripline.pdfiline.1,4):
sdfilineld] =z ’*~0’:

<+ Before we do the conversion. we must replace the leading blank (14 »-
<% @e have one) with zero. %/
if (sgfrlanef0l) == *)
sdfriainelC) = ‘0°;
pcode->cdfr = patoi(pafiline):

if (pcode->cdf: < Q

<
fpraintéistaderr, "wxx ERROR xx%x AOnnumeric DFI number X%o",
pcode->cafi);
fprintf(staarr,”, line %d\n".linecnt);
>

if (pcode->cdéi > MAXDFIS)
<

‘iprintfis:derr, "»s« ERROR s3%x DFl number out of bounds = %da*,
pcode-:cdfi);
fpraintfcstagerr,”, line Xd-n", linecnt);
>

¢+ Convert the DUI rumber int> an integer by substring and an ascii to ¥~/
“% integer conversion., %~ :

substr (pline.cduiline.5,3):

sduiline(3]) = *~0’;

pcode-"cdui = patoi(pduiline?:

if (pcode->cdir < Q)

<
furintéisrierr, "wxx ERPOR uxxx nonnumeric DULI number Xxd*.,
pcode->cdui)i
fprantf(staerer,”, line %axn", linecnt):
b

‘v Multipiy the DFI number by 4 to get the proper offset for the «~
« 1ndex, &/
10fi : 4 & (pcoge->cafi);

-« Clear any buffered information. =/
fflush(pout);
fflushipreadout ’;

preadiut = pointer to outpst File used for reading. »/

“» pout : pointer '3 output firie used for writing. =/

v Save the positian of lcuriac. 1€ there are codes Or a range., we s/
« will want to erter this position in the index entry. »/
lcurtmp = lcurloc:

v Sgek T« this pus1tion plus the rize 0f the structure. s/
fseeripout, (lcurloc + sizeof(=pcode)).0)s

74

¥

g

~% LOOK ahc¢ad to 3e¢ if we are ready to process the codes. Switch »/
7% on the value returned. =/
while ((loop2 := lookahead(0)? ‘=z ENDFILE)
<
switeh (loop2)

<
case NEWDFI:
lcurloc = ftelli(pout):
prstruc(Q);
7% Return to outside loop . 24
break: s/% to process next DFI. L 4

case DUINAME:

<% When the DUI name is continued on more than one line., the lookahead
‘¥ routine will a3 ;usts the file pointer and increments the line count,
<« Continuc in loop looking anead, =/
break;
case LIT:

L 24
Ly

¢« A LITERAL has aeen found. We want to zero out any values that may =~

‘% have “enged bifore Jiscouwriny the LITERAL. We search for the =/
‘%« next DFI. We are then prepared to 100k ahead. see the aext DFL., =/
% and then we wii. write the structure info to file. x/

inttialod;

search();

prstruc(1);

break;

case CODELINE:
“% We are un « line that contains codes and a LITERAL and 2 renge x-

N

‘*» on the next line and write the code to file. »/
codelen = O3

posi = pos2;
pciine = getcode(pline);

while (f(chk = lookahead(0)) =z CODELINE) &&
(posi < pos2))

<
strmove(pcl:ne,ponecode);
pcline = concat(ponecode):

++ipcode~>cent);

‘¢ When the $irst code 13 found. set the minimum and maximum code *-

has not been fzurd. e Jet the code. check to see if it is continued =/

‘4 equal to the le-qgth of that code. Otherwise compare the size 0f the =/
‘4 code . see 1§ -t exceeds the »iZe Of the maximum Or minimum code %/

«* lengtn, and act accordingly. »-
it 'pcode->cent =z 1)

<
pcode=->cmin = size(pcling))
pcode->cmax = size(pcline)s
>
else
4

if ((s1Zemin = sizZe(pclaneg)) < pcade->Ccmin)
pcode~>cmin = sizemins}

75

- -'.'-":?.vv-'l':

BAGE |

< At A k3 TS
*a 23 o,

s

T T b it b oial i Relied B b R A 'y £ 200 S0 AR by St A N A R NS AR A S B A RS o FTR TS -1

if ((sizemax = gize(pcline)) > pcode-i>cmax)
pcode->cmax = sizemax’
b 4

codelen = size(pcline) + 15
pcode->cingth += codelen;

= 'nef DEBUG

fprantf(stdout,“%s\n",pcline)l;
Acadré

‘%« Write the code td the file. x~
furite(pcline,sizeaf(char),codelen,pout);

break;

case RANGE:
e have found a« left parentreses followed by a non-alphabetic. We arex~
‘s ready tu pProcess a range. -
range();
break;

default:
fprintfistderr. "««x ERROR x%x Inapplicable return™?i;
fprantécsrderr,. ’ value = %d", loop2);
forantf(stderr.”. line %d\n",linecnt):

ex1t(1);
break;
>
16 t(loopZ == NEWDFI? . (leop2 == LIT))
break:
b
if (loop2 =z ENHDFILE)
<
prstruc(0';
preof();
3
b /% close innevr 100p »~/

7% end program=/s

76

{ /i

7o A
il

25045

s

e
s

VS

0 g

Bl
T

¢ LR

Wty

o d

%

:

3 .

Attachment 2

Representative Example Coded in Ada

77

T 3 ’\f.'(

RAUATM WS % A Y ™

ae St

R e
et
Dt B B

S ;‘
NG
¢x§
Ay 4
238
A
)‘ 43
[y |
- !
t'..-.') |
AN -- This rackase imrlements the insert °DEFINES® used by the C imrlementation
% ~- of the JAMPS DFIDUI rarser.
LSS -
“_ rackage DEFINES is
i)
i MAXMSGS: constant inteder = 150j
MAXKDSS: constant inteser (= 600}
2 j MAXDFIS: constant inteder = 13500
N . KDF IS¢ constant integer (= 50i
S MSTATES: constant inteder = 100}
) KSTATES: constant inteser = 100j
-':i DSTATES: constant inteder i= 100; 1
i?*v MSTRMAX: constant inteser = 423
e MMANFLDS! constant integer = 3}
SHRTLEN! constant inteder (=5i
' LONGLEN! constant inteder $=20} J
i; & KDSLEN: constant integer :=9;
F o FOFHLEN: constant inteder (=253
: MAXVAL1: constant inteder (=357
"I DCHAINS! constant inteder $=305%
y DTABLE: constant inteder (=200}
z DDUIS: constant integer $=1003
T DTABSTR: constant inteser $=40;
é KRSTATE! constant inteder =50}
e g MSGINDEX: constant inteder (=1j
3 KDSINDEX! constant inteder =2}
Satt MSG:! constant inteder (=3
'g KDS! constant inteder (=4}
DFI: constant integer (=35}
\Q FDFH! constant inteder (=43}
N INIT: constant inteser =13}
UPDATE! constanl inteder =23}
. DBGON: constant inteder (=13}
DEGOFF: constant integer (=0}
334 MFILENM: constant inteder $=14;
] TEMPFILE: constant strins !=*ibld. tnF
e 200 STRFILE: constant string $="ibld.str"
BN CHN: comstant integer $=13
By COMNOTAB: constant inteder $=2}
g COMTAB: constant integer $=3;
DIFNOTAB: constant inteder (=4j
DIFTAB: constant integer (=3}
ALTCHN? constant integer (=63
DIF! constant inteder (=7}
C: constant inteder (=1
E! constant inteder (=23
FIX! constant inteder =13
VAR: constant integer 1=33%
UNKNOWN: constant inteder :=0i
. NA: constant inteser (=-1; 4
i'n' end DEFINESH
W
.94
o Ayt
S
"‘
s
.,,_.
b
-
78
i f
3.3
Y
Ll
ALY ‘f.~. Wy M RERES AL LRyt g R PLIA Y

AT ASAN AR R AR LTI KN AN ¥ SN "‘l' ‘n‘.';' DR BN o VW N M)

.
(]
-t

ey NS A
:.';Et

IS

.."‘l

' Vq . Pt
'.I.‘.J‘:A 2

i, Bl EC e
LA e rtinie

-

ANy

»
&

Y

with text_.iordirect_i0»JAMPS_STUBS/» JAMPS_INFUT» JAMPS_OUTPUT,DEFINES
use text_ioi .
use inteser_ioi

use defines;

rackade DFI_DUI_PARSER is

-~ The next line is necessary since Ada will not allow the
-~ ysase of undefined twres in tuyre deffinition.
tyre codej

-- Some ture deffinitions to be used in the structure ‘CODE".
tyre access._code is access codej

~= NOTE: Twre code is used internally, but must be changed into
- a stream of characters via unchecked conversion to

- accomodate the character oriented C imrlementation.
tyre code is

record
CDFITYPE! intederi -- This ghould be a8 user defined tyre
-- since the only leditimate values are
-- 1 and 2.
CFI? inteder;
chul: inteseri -- CDFI and CDUI should rrobably be uswer

-~ defined tyresy but I’m not sure what
~-- randes would be leditimate.

CRANGE ¢ intederi -~ This should also be & user defined
-~ ture with values ‘inteser’:
-- ‘floating._point’sy ‘octal’s and
~= ‘no.range’,

CFHIGH!? floati
CFLOW? floati
CLHIGH: floats
CLLOW? floati

CMINS inteder;
CMAX: inteders$
CLNGTH? inteders
CCNT: integer$
LCNEXT: access_codes

end recordi

Ay St Ar A A A e MO L A SN T R LR M ST ePaTs T e R S A ¥ v S T e ey
7
LY
W
‘.k
|
- -- Another non-imrlemented feature. Record rerresentation clauses
\ ~-- are not wet surrorted. This mea2ns that the record structure here
3 -~ may not match the eauivilant C structure.
) ~--for’ code use
--record at mod 8;
% WORDB ! constant intederi=4j; -- Assume 4 bytes rer word.
% -- CDFITYPE at OXWORD rande 0 .. 313
3 -- CDFI at 1¥WORD rande 0 .. 31
-7, -~ CDUI at 2XWORD rande O .. 313
'%3 -~ CRANGE at 3%WORD rande 0 .. 31}
o™ -- CFHIGH at AXWORD rande O .. 63} -
) - CFLOW at &GXWORD range 0 ,. 63i
-- CLHIGH at BXWORD rande 0 .. 63}
] -~ CLLOMW at 10%WORD randge 0 .. 63i
33& - CMIN at 12%XWORD range 0 ., 32i
a3 -- CMAX at 13%WORD rande O ,. 32}
] ~- CLNGTH 3t 14%WORD rande O .. 32}
. -- CCNT at 1SXWORD randge 0 .. 32j
b, -~ LCNEYTY at 16%WORD rande O .. 63
\' ----- end records
9y Y
:*4 -- € allows unconstrained stringsy» Ada does not. To accomodate the
ﬂy -- existindg interface 3 larde strindg will be usedr with a3 software chech
>*§ ----- for the delimiter used bw C.
’ rrocedure MAIN(ARGC ¢! irtederi -- number of files
’ ARGY ! string); -- file names
A
,\j tyre WHICH.FILE_ERROR is (INFUT, OUTFUT);
% end DHFI_DUI_FARSERS
&
-'; rackade body DFI_DUI.PARSEK 15
o rrocedure MAIN(ARGC : intesers;
ﬂ: ARGY ! STRING) is
FIN ! lond_inteders; -~ SHOULD BE FILETYFE
FOUT ! lond_inteders ~-- SHOULD BE FILETYFE
b FPIN_MODE ¢t constant JAMPS_INPUT.FILE_MODE := JAMPS_INFUT.IN_FILE;
S POUT_MODE ! constant JAMFS_OQUTFUT.FILE_MODE (= JAMPS_OUTFUT.IN_OUT_FILE
%5' FILE_BEING_OPENED: WHICH_FILE_ERROR?
{ SLINE ! JAMPS_INFUT.INFUT_LINES
| » SCLINE ¢ JAMPS_INPUT.INFUT_LINES
W SONECODE t JAMPS_INFUT.INPUT_LINES
Y " FLINE ! JAMFS_INFPUT,ACCESS_INFUT_LINES
FOFILINE ¢ JAMPS_INFUYT.ACCESS_INFUT._LINES
. FDUILINE ¢ JAMFS_INPUT.ACCESS_INFUT_LINE
. FONECODE ! string(l .. B80); R
.:- PCLINE ¢ string(i .. 80):
"ot STRING_END ¢ inteder;
«,* STRING.START! 1nteder;
-’ LINECNT t inteder;
o FCODE { ACCESS_CODE+ *
~ FCREAD ¢ ACCESS.CODES
B LLFI ¢ lond.inteders --FILE_INDEX
LCURFOS { lond_inteders; --FILE.INDEX
LCURTNF ! londg_integers --FILE_INDEX
i_LCURLOC ¢ lond_intedersi -=-FILE_INDEX
LTMPOFF ! lond_intedersi --FILE_INDEX
80

VYA

4

‘ -

i
-
ol
Y 2

*
’V
A

”){

N

! FTEL { lons_inteder} --FILE_INDEX

ff F0OS2 ! inteders
> N FOS1 ! intedger;

i CODELEN ! integer;

SIZEMIN ! intederi

A SIZEMAX { inteder;
Loy LOOP2 ¢ JAMPS_STUBS.LOOKAHEAD_VALUE}

-3§ TEMP_LONG: long_integeri ~- used in inteder to long inteder
(32 ~- conversion.

rd TEMP_INT ! inteser;
b OUTRUF ¢ character;
£ ? COUNT ! intederi

INFUT_INDEX ¢! integeri

. - KEKERRRAERANEERAERRAE Start of Executable Code REKXKRAXKEXKEKKKRKXEKAEXKKKEKK
',% | bedin

] it ARGC < 3 then

a2\ rut_line(*Xkk ERROR %%% an inrut and outrut file must®)$
)
N rput_line(*be named');
i returni -- BAD_FILE_COUNT
:*: end ifi
Loy

- The delimiters used by the C interface for unconstrained strinss

.- are scanned for here. Migsht be better to do it in the JAMPS_INFUT

QR - rackade.

y STRING.END:=1;

STRING.START:=1i

while ARGV(STRING_END ,. STRING_END+1) /= */n" loor
STRING_END:=STRING..END+1

end loori

FILE_BEING.OFPENED (= INPUT}

3 JAMPS _INPUT.oren(FPINyPIN_MODE»ARGV(STRING_START .. STRING_END),»**)}

Y STRING_ENDN:=STRING_END+2}
P STRING_START{=STRING_END}

Q} while ARGV(STRING.END .. STRING.END+1) /= */n" loosr

N\ STRING_END:!=STRING_END+13
E end loori

N FILE_BEING_OPENED = QUTPUT;
l‘g SAMPS_OUTPUT .0oren(POUT»POUT_MODE»ARGV(STRING.START .. STRING_END)»**)}
S -- At this rointr the C code executes a serarate OPEN to allow
be | 4 - readings from the outrut file., This does not seem necessary
;'2 -- since the Ada DIRECT.ID rackase allows a file to be orened
". - - for both reading and writing.,
AR ¢ .=

L - S4% INITIALIZATION CODE xxx

" FCODE != new codej

— PCREAD!= new code;

- LCURLOC : =WORDXMAXDFIS;

<3 JAMPS _OUTPUT.set_index(POUT,LCURLQCC)

CoR LINECNT $= 03

{n: PLINE i= new JAMPS_INPUT,INPUT_LINE;

RS

oy

5
_———
s

F

P NG g B 0 &

X

%

W

[

81

. .- - L et AT AT ettt a ..
N WA IO . N AR AT A

v
")
",
"- "‘h
z; p -~ Get the first line of the file. This loor will process the DFI’‘s
Np am -
N MAIN_LOOP:

loor
~— UNIX ‘files are streams of characterss with lodgical records delimited
-~ by a single delimiter character srpecified a3s */n*. For this estimate
== 1 am assuming that the imrlementation of SEQUENTJIAL_I0 will return
-~ the strins as lodgical records with the */n" strirred off. The
-- logic which assumes simple stream input with no lodical record
~- pre-processing is included if such surport is not available.

-~ for INPUT_INDEX in 1 .. SLINE‘’last loor b
-- JAMPS_INPUT.read(PIN»INCHAR)}

-- exit when INCHAR = ‘/n’

-- SLINEC(INPUT_INDEX .. INPUT_INDEX) =

-- unchecked_conversion(INCHAR) } A

- end loori
JAMPS_INPUT.read (PINsSLINE);
-~ Check for terainating condition! End of inrut file.
it JAMPS_INPUT.END_QF_FILE(PIN) then
JAMPS_STUBS.rreofi
Put_line(*Exiting srocedure MAIN®)}
returni -- NORMAL_TERMINATION
end if}
-- C3ll the initislization routine
JAMFS_STUBS.INITIAL
-- Initialize the strings that are being used.
PDFILINE = new JAMPS_INFUT.INPUT_LINE;
PDUILINE = new JAMPS_INPUT.INPUT_LINES
-- PONECODE != nullj
-- PCLINE i= nulls
-~ Set the index and increment the line count.
LCURPOS (= JAMPS_INPUT.INDEX(PIN);}
LINECNT i= LINECNT + 1t
-- Start extracting the informsation that we uwant.
if SLINE(T ., 1) = °E® then
PCODE.CDFITYPE (= 13}
elsif SLINE(1 .. 1) = °C* then
PCODE.CDFITYPE (= 23}
else
rut_line(" X%x ERKROR %xXx DFI ture must be C or E*)i
rut(linecnt);
returnd -- BAD_DFXI_TYFE
end ifj
-- Convert the ASCII DFI number to an interder.
- Note! 1 decided to handle rossible blanks right here since that
-~ is the way it was done in the C code. It seems more
-- arprorriate to handle blanks in the conversion routine.
if SLINE(2 ,. 2) = * * then
SLINE(2 s 2) i= *0° K
end ifi
rcode,cdfi = JAMPS_STUBS.ASCII_INTEGER(
-~ unchecked_conversion(SLINE(2 . 5))r4)3
-~ Check for valid DFI nuaber.
if rcode.cdfi < 0 then
rut_line(" 2%% ERROR %%X nonnumeric DFI number*®)i
rut(rcode.cdfi)d}
rut_line(’ line number*®)i
rut(linecnt);
end if}

L)

oy
i
¥

O
e
Al

o<
ol
42

£

£

if

T S N L G R N I F AL G

rcode.cdfi > MAXDFIS then
rut_line(® %%%x ERROR %%% DFI number out of bounds =°);
put(mscode.cdfidi
rut_line(" line nuaber®)}
rut(linecnt);
end it}
Convert the DUI nuaber,
it SLINE(6 .. 6) = * * then
SLINE(S .. 6) i= *0°}
end ifi
pcode.cdui (= JAMPS_STUBS.ASCII_INTEGER(
unchecked_conversion(SLINE(6 .. 9)),4)3
Check for valid DF1 number.
if pcaode.cdui < 0 then
put_line(* %xk¥ ERROR %X% nonnumeric DUI number®);
rut(rcode.cdui)s
rut.line(* line number®)i
rut(linecnt);
end it}
Multisly the DFI nuaber by 4 to set the prorer offset for the inde:.
1dfi != unchecked_conversion(4 X pcode.cdfi)i
At this pointy the C code flushes out the in core buffers. There is
no eauivilant function in the DIRECT_IO rackage.

Save the current rposition of lcurloc.
lcurtmr i= lcurloci

Seek to this mosition in the outrut file.
JAMFS_OUTPUT .set_index(POUTylcurloc)

Look ahead to see if we are readw to rrocess the codes. Switch on
the value returned.
LOOP2:!=JAMPS_STUBS .LOOKAHREAD(0) 3}
INNER_LOOP:! loos
case LOOP2 is
when JAMPS_STUBS.ENDFILE =>
JAMPS_STUBS.rrstruc(0)i
JAMPS_STUBS .rreof’
exit INNER.LOOF;
when JAWPS_STUBS.NEWDFI =>
LCURLOC:= JAMPS_OUTFUT.INDEX(FOUT)}
JAMPS_STUBS.rrstruc(0)}
when JAMPS_STUBS.DUINAME =:
nulls
when JAMPS_STUBS.LIT =
JAMPS_STUBS.INITIAL ;
JAMPS_STUBS . SEARCH
JAMPS_STUBS.PRSTRUC(1) 3
when JAMPS_STUBS.CODELINE =-
CODELEN!=0}
POS1:=P0S2}4
PCLINE:!=unchecked_conversion(GETCODE(PLINE))
while JAMPS_STUBS.LOOKAHEAD(O) = JAMPS_STUBS.CODELINE
and POS1 = POS2 loor
FPONECODE :=PCLINE;
PCLINE = JANPS_STUBS.CONCAT (FONECODE) $
end loori
PCODE.CCNT{=PCODE.CCNT+1

83

NN

PR ICY YT T LEat A LSOO LRGN g A LSt DAR S E A A AL AEAR A A S BE I AL S A A S B O P

it PCODE.CCNT = 1 then
PCODE.CMIN:=PCLINE lasti
PCODE.CHMAX:=PCLINE lasti
nulli
else
-- This section had to be re-written to accomodate the C assignment statement
-~ wirthin the IF statement.
- SIZEMIN!=FCLINE’lasti
SIZEMAX=SIZEMINSG
if SIZEMIN < PCODE.CMIN then
FCODE.,CMIN:=SIZEMIN;
end ifh
if SIZEMAX > PCODE.CMAX then
FCODE.CMAX = SIZEMAX;
end ifi
end if3
CODELENS=PCLINE‘last +13}
FCODE.CLNGTH := CODELEN +1i
~- Write the code to the file.
for COUNT in 1 ., CODELEN loor
- OUTBUF ¢ =unchecked_conversion(PCLINE(COUNT .., COUNT))}
JAMFS_OUTPUT . WRITE(PDUTOUTBUF) $

R

zzg(hffdwf’

‘;“; end loomri

."ﬁi when JAMPS.STUBS,RANGEY =

5.‘, JAMPS_STUBS.RANGEX

LAy -~ Not sure if these lines should be counted. Considering the

%97 % ~ ture checking on LOOP2, the others case should never occur.

O when others =>

‘uyg‘ rut_line(® k2% ERROR 2%% Inarrlicable return! value=*)i

- TEMP_INT!=unchecked_conversion(LOOP2)}
. PUL(TENP_INT) S 1
» put_line(® line=")3}
rut(linecnt)i
end casel
-~ At this roint the C listing checks assin for LOOP2 = NEWDFI or LIT
-~ The lines are not included here (redundant) and should also be
-- excluded from the count of lines in the C listing,
LOOP2:=JAMPS_.STUBS ,LOOKAHEAD(0)
end loor INNER_LOOP:
end loor MAIN_LOGCF}

- HANDLE EXCEPTIONS

excertion
when NAME_ERROR | USE_ERROR =>
it FILE_BEING_OPENED = INPUT then
rut_line(*2%2 ERROR %%% uynable to oren * & ARGV(STRING_START ..
STRING_END) & * for read®)}
returns -- BAD_INPUT_FILE
elsif FILE_BEING_OPENED = QUTPUT then
put_line(*X%% ERROR x%%x unable to oren ° 3 ARGV(STRING_START ..
STRING_END) ¢ * for write®)}
returni ~- BAD_OUTPUT_FILE
end ifi {

end}
end DFI_DUI_PARSER} .

84

o T Se T, oy et S AR T Dt e T T R N L TRT AT TR

Sy e e

Foiks st i

"

'\

SRS 4
5 ,'-' 3 LA AT

